

THE ANATOMY OF LABOR MARKET DISTRESS

Eric Hanushek, Stanford, Hoover Institute Simon Janssen, IAB Jacob Light, Stanford University Lisa Simon, Revilio Labs

- Extensive literature shows (average) negative effects of worker displacements (Jacobson et al. (1993); Couch and Placzek (2010); Davis and von Wachter (2011); Lachowska et al. (2020), and Schmieder et al. (2023))
- Effect sizes extremely heterogenous and depend on worker and firm characteristics: age, gender, education, migration background, industry, occupation, tenure, economic conditions,...

- Can observable characteristics explain a large fraction of the loss variation or do other factors play a much bigger role?
- How many workers are resilient to displacement losses?
- Do workers who adjust to displacement have different coping strategies than observably similar workers who get disrupted by displacements?
- To answers these questions we have to estimate the entire distribution of displacement losses.

CONTRIBUTION

Estimate the loss distribution by estimating a displacement loss for **each single** worker in the data

Synthetic control group approach:

- One treated unit
- Few donors (control units)
- Long observation periods

RESEARCH DESIGN: SYNTHETIC CONTROL GROUP FOR EACH TREATED WORKER

- First step: restrict donor pool (to avoid overfitting)
 - Select workers in region-gender-occupation-industry cell
 - Sample 20 workers based on residual distribution before closure
- Second step: Estimate treatment effect of closure as the difference between observed and synthetic control outcome across 5 years post-closure

- Manufacturing of refractory ceramic material and goods
- 30 Employees
- All men
- 10 have no degree; 20 have an apprenticeship degree
- 24 in occupation for industrial process and plant engineering for ceramic materials
- 5 machine builders
- 1 accountant

EXAMPLE: AVERAGE DISPLACEMENT LOSS

EXAMPLE: SYNTHETIC CONTROL GROUP

EXAMPLE: SYNTHETIC CONTROL GROUP

EXAMPLE: SYNTHETIC CONTROL GROUP

DATA AND SAMPLE CONSTRUCTION

- Integrated employment biographies (IEB)
- Firm closures: atomized closures of firms with more than 50 employees before the closure (using BHP)
- Treatment group: Individuals who suffered firm closures between 2000 and 2005
 - Two years of tenure before treatment
 - No missing values in key analysis variables for at least five years before treatment
 - Younger than 55
 - 24243 treated individuals
- Outcomes of interest: earnings, days employed, occupation/region switching

MAIN RESULT: EARNINGS LOSSES ARE HETEROGENEOUS AMONG LAID OFF WORKERS

EARNINGS LOSSES DIFFER BY WORKER CATEGORIES

CONDITIONAL EARNINGS LOSSES

EARNINGS LOSSES EXPLAINED BY CATEGORY

	Loss	Pre-displacement
		wage (t-1)
All	0.189	0.656
Age	0.011	0.017
Education	0.017	0.158
Gender	0.015	0.172
Tenure	0.004	0.002
Occupation	0.039	0.324
Firm	0.156	0.482
Industry	0.090	0.356
Region	0.022	0.065

LOSS AFTER 5 YEARS EXPLAINED BY CATEGORY (R-SQUARED)

	Loss after
	5 years
Age	0.011
Education	0.017
Gender	0.015
Occupation	0.053
Industry	0.091
Occupation switch pattern	0.164
Region switch pattern	0.246

- Analyze further adjustment margins
- Analyze within firm distributions
- Analyze shape of distributions in more detail