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1 Introduction

Universities have long been integral to the fabric of American society, shaping its workforce,

fostering innovation, and driving the creation of knowledge. Their enduring relevance, even

amid economic and societal change, reflects a capacity for adaptation. The evolution of

Harvard College exemplifies this institutional flexibility. Established in 1636 to train Puritan

clergy, Harvard has since transformed into a leading global research institution. This journey

from narrow specialization to intellectual breadth mirrors the evolution of many of today’s

elite universities (MacLeod and Urquiola 2021).1

In recent decades, technological disruption and economic restructuring have transformed

the skills that employers seek (e.g., Autor et al. 2003). At the same time, recent global

conflicts and intensified public discourse on social inequities have heightened the prominence

of societal issues on college campuses. Against this backdrop, higher education leaders face

a fundamental challenge: how quickly and effectively can universities realign their curricula

when student preferences and broader social imperatives change?

Despite widespread debate over whether universities sufficiently adapt to evolving labor

market and societal demands, systematic empirical evidence on this question remains limited.

To measure responsiveness, I combine novel data on course offerings and enrollment at a large

sample of US universities with an instrumental variables approach that isolates changes in

student demand from confounding factors like institutional policy shifts. Specifically, I use

region-by-field variations in employment growth to pinpoint where demand for new skills

should be highest. Then, through text analysis of course descriptions, I assess whether

universities update not just the number of courses offered but the substance of what is

taught. The results reveal that institutions expand and contract course offerings far less

than one-for-one in response to changes in student demand — particularly when demand

decreases — and that new course creation, rather than a major overhaul of existing classes,

is the primary channel for curricular change. Differences by institution type further highlight

how organizational priorities and resource constraints shape universities’ capacity to adapt.

To measure course supply and student demand, I constructed a novel dataset containing

granular course-level information for a large and nationally representative sample of US

universities. The dataset includes the complete set of courses offered by 783 colleges and

universities, which collectively enroll over 52% of all US baccalaureate-level undergraduate

students, amounting to over 29 million course sections offered since 1998. I collected the

1Harvard’s transformation, particularly its elevation to a premier research institution, owes much to
Charles Eliot’s leadership in the late 19th Century. Drawing on European models, Eliot introduced sweeping
reforms, including expanding research initiatives, diversifying graduate programs, and creating a flexible
course selection system that reshaped curricula in sciences, history, languages, and social sciences.
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data by scraping information from online course catalogs and schedules. I observe details

such as the instructor(s), section-level enrollment, instructional format (e.g., in-person or

online), and a brief text description of the course content.

Using this new dataset, I analyze how universities adjust their supply of courses in re-

sponse to changes in student demand. I consider two margins of course supply adjustment.

Along the extensive margin, universities meet changing demand for courses in a field of

study (hereafter, “field”) by adjusting the quantity of courses or sections.2 Along the inten-

sive margin, fields within universities might meet changing demand by modifying the content

of the courses they offer.

I describe supply responses on the extensive margin by estimating the elasticity of the

quantity of courses a field offers in response to changes in demand for that field. Such

estimation is complicated because course enrollment, which I use as a proxy for demand,

is influenced by both demand and supply factors. Students cannot enroll in courses that

do not exist or that are rationed. These constraints can distort the relationship between

enrollment and demand, making it difficult to separate genuine shifts in student interest

from supply-driven limitations. To address this, I construct a shift-share instrument based

on field-specific employment growth, allowing me to isolate the component of enrollment

changes driven by evolving labor market conditions. The instrument allows me to focus on

student demand for fields or skills rather than universities’ supply of courses that reflect

those fields or skills.

While students are responsive to changing conditions in the labor market, universities

adjust the quantity of courses less than one-for-one to this changing demand. On average, a

10% change in demand for a field leads to a 2.1% change in the quantity of courses and 5.3%

change in the quantity of course sections in that field. The elasticity varies across fields.

Course quantity is relatively more elastic when demand for a field is growing and less elastic

when demand is decreasing. The results suggest that the constraints that an institution

faces when it seeks to grow a field may differ from the constraints it faces when it seeks to

shrink a declining field.

Universities can respond to changing student demand not just by offering more or fewer

courses in a particular field, but also by modifying the content of pre-existing courses. For

example, an Economics course might incorporate programming concepts to cater to surging

demand for Computer Science skills. This adaptation, occurring within the content of courses

rather than through the quantity of courses offered, represents a response on the university’s

2A large lecture course in the Principles of Economics might be offered at multiple times, in multiple
semesters, with multiple instructors. In this example, Principles of Economics is a single course and each
instance of Principles of Economics during a term counts as a single section.
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intensive margin. If fields also respond to students’ changing demand on the intensive margin,

the elasticities described above may understate the university’s responsiveness to changing

demand.

I apply Natural Language Processing (NLP) techniques to course descriptions to measure

course content changes related to student demand. The central challenge in this analysis is

the lack of a direct measure of students’ preferences for specific topics or skills. To overcome

this, I develop a method that assesses course content in relation to broader themes that

students might consider when selecting courses.3

The text analysis proceeds in two steps. In the first step, I develop representations of

course descriptions using Term Frequency-Inverse Document Frequency (TF-IDF), a widely-

used method for representing text documents as vectors. In the second step, I assess each

course description’s “alignment” to the selected themes by scoring words in the description

based on their frequency in representative documents of each theme. For example, I measure

a course’s alignment with current events based on how commonly key words and phrases in

the course description appear in New York Times articles, or its alignment to job market

demands based on the frequency with which key words and phrases appear in job descrip-

tions.4 To my knowledge, the approach I describe is a novel extension of NLP methods and

is particularly appealing for its transparency and interpretability.

In general, course offerings are highly stable: 65% of upper-level courses offered in 2022-

23 have existed for at least a decade. Once a course is introduced, the topics and skills

emphasized in the course are highly persistent.5 Thus, changes in the topics and skills

offered by courses come primarily through the introduction of new courses. Through this

channel of new courses, universities modestly incorporated content related to current events,

social justice, and job relevance. Between 2012-13 and 2022-23, the average course offered at

universities in my sample became 0.044 sd more aligned to social justice and 0.033 sd more

3I relate each course to five themes: current events, job relevance, scholarship, social justice, and tech-
nology. I chose themes based on three main criteria: first, their general applicability across multiple fields;
second, the availability of text data sources that could help identify relevant words/phrases; and third, their
relevance to intellectual interests students might possess or cultivate during college.

4This second step addresses an important limitation of TF-IDF: its sensitivity to specific jargon. By
projecting the document vector onto thematic weights, the method accounts for evolving language use,
ensuring that similar meanings—expressed through different terms—are treated consistently. For example,
“global warming” and “climate change” would appear orthogonal in a pure TF-IDF representation, but
the projection ensures that courses using either term score similarly if both phrases occur with comparable
frequency in a thematic corpus, like New York Times articles, and enabling comparisons across course
descriptions specifically in relation to each theme.

5Frictions in updating course descriptions may create a lag between actual content changes and their
reflection in descriptions. While this introduces some measurement error, even after substantial time has
passed and course descriptions have been updated, the core topics and skills emphasized in a course remain
similar to those from when it was first introduced.

3



aligned to job relevance. For comparison, the 10-year change in social justice alignment over

the period of a decade is approximately 6.5% of the difference in social justice alignment

between the average Sociology course and the average Business course. Such change occurs

primarily through the introduction of new classes, rather than the modification of existing

courses.6

My findings suggest that the quantity of courses offered adjusts far less than one-for-one

to student demand and the content of these courses remains quite stable once introduced.

While these results shed light on how universities adjust their course offerings and highlight

certain trade-offs inherent in these decisions, determining what constitutes an “optimal”

adjustment is less straightforward. The optimal elasticity of course quantity is likely greater

than zero so that students can acquire the human capital needed to thrive in an evolving

economic, social, and technological landscape. However, it is almost certainly less than one,

given constraints such as the inelasticity of instructor supply. Similarly, while some degree of

course content evolution is undoubtedly beneficial for students, rebuilding each course from

scratch every semester would clearly be excessive.

In the heterogeneity analysis, I examine how different types of institutions adjust to

changing student demand. Understanding these differences offers valuable insights for poli-

cymakers and labor markets by identifying which universities are most responsive to external

shifts. Research-intensive universities (R1) are more elastic in adjusting their course offerings,

particularly by expanding supply in high-growth fields. Less research-intensive universities

respond to growing demand primarily by increasing section offerings within existing courses,

while non-research-intensive universities are the most responsive in reducing course offerings

in fields with declining demand.

Heterogeneity analysis of intensive margin changes reveals R1 universities made the

largest shifts in course content, where new courses increasingly emphasize current events

and social justice. In contrast, courses at less research-intensive institutions closely resemble

those offered a decade ago. Courses at these institutions generally have a stronger focus on

job-related topics compared to similar courses at R1 schools. These patterns reflect both

institutional priorities and shifting student preferences, underscoring the interaction between

supply and demand in shaping university curricula.

This paper makes three central contributions. First, it introduces a novel dataset that

provides detailed insight into higher education instruction through course-level enrollment,

6A potential limitation of this analysis is that course descriptions may be updated less frequently than
the courses they describe. I address this concern by measuring changes over relatively long periods and
through an index that captures the central themes of a course rather than the introduction/elimination of
specific topics. I discuss the advantages and limitations of the course descriptions, as well as possible bias
from infrequent course description updating, in Section 5.
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supply, and course description data. Beyond this paper, the dataset will facilitate new re-

search of how colleges shape the provision of knowledge through their course offerings. Sec-

ond, the project is unique for analyzing supply-side responses to changing student demand.

The results complement a larger existing literature on how students adjust to changing re-

turns to college degrees by highlighting the potential influence of imperfect course supply

adjustments and the adaptability of course content in shaping students’ course preferences.

Third, I document heterogeneity in both the margins along which universities of different

types respond to student demand and the kinds of courses these universities offer.

The rest of the paper proceeds as follows. Section 2 summarizes research related to this

project. Section 3 describes the unique course catalog dataset used for this project. Sections 4

and 5 document adjustments of course quantity and content, respectively, to student demand.

Section describes how fields adjust course content with changing enrollment. Section 6

concludes.

2 Related Literature

This paper contributes to a small but growing literature on higher education supply and a

robust literature on factors influencing student demand in college. Previous work in higher

education supply demonstrates how costs of instruction and instruction technology influence

the supply of instructors across fields (Courant and Turner 2017, Hemelt et al. 2021). Ex-

isting research related to margins of course supply response includes work on rationing of

courses in high-demand fields (Bleemer and Mehta 2022, Bleemer and Mehta 2021, Mum-

ford et al. 2024) and grade inflation (Ahn et al. 2019, Denning et al. 2022).7 Closest to this

project is Thomas (2024), who models university preferences using instructor allocation and

enrollment in introductory-level courses for a sample university. His work demonstrates the

influence of course supply on students’ enrollment decisions and considers the welfare trade-

offs of expanding sections in high-demand fields with the higher cost of instruction in these

fields. My project extends this literature in two main ways. First, I use new data that pro-

vide insight into both course supply and content.8 Second, I leverage the diversity of schools

in my dataset, which allows me to explore the heterogeneity in institutional responsiveness.

This paper builds on a much larger literature on factors influencing student decision-

7A related literature examines the supply of for-profit colleges, though it primarily focuses on institutional
supply and enrollment rather than field-level adjustments (Deming et al. 2012, Gilpin et al. 2015).

8Other recent work uses archival university records, including program offerings and class rosters, to study
the influence of co-education on course offerings (Truffa and Wong 2024), how curricular exposure shaped
women’s long-run participation in science (Andrews and Zhao 2024), and how the availability of nursing
programs affected women’s career choice (Bald 2025).
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making, such as major choice, in college.9 The work in this area most relevant to my paper

studies students’ responsiveness to changing conditions in the labor market, where evidence

is mixed. Some have found that students respond inelastically to changing wages (Beffy

et al. 2012, Wiswall and Zafar 2015, Long et al. 2015), while other work documents larger

responses in terms of completed majors to occupation-specific shocks (Freeman 1976, Acton

2021, Weinstein 2020) or changing macroeconomic conditions (Blom et al. 2021). Contempo-

raneous work by Conzelmann et al. (2023) estimates relatively elastic responses of students’

enrollment across fields to changing labor market conditions, measured using job vacancies,

and employs an estimation strategy similar to the one used here. My results align with their

findings, but by focusing on course-level supply rather than degree completions, this pa-

per uncovers additional margins of institutional adjustment that complement their analysis.

Specifically, the asymmetric responses in course quantity to growing versus shrinking de-

mand reveal supply-side constraints that are not apparent in aggregate degree-level studies.

This finer granularity highlights how institutions dynamically adapt their curricula to shifts

in student interest and demand, which may ultimately shape broader educational outcomes.

Finally, this paper contributes to a growing literature in Economics using text data

(Gentzkow et al. 2019), including research that applies text methods in the economics of

education (Eggenberger et al. 2018, Biasi and Ma 2022, Chau et al. 2023). Using a dataset

containing a large cross-sectional sample of course syllabi, Biasi and Ma (2022) and Chau

et al. (2023) use novel text analysis techniques to develop measures of course content in rela-

tion to the research frontier and skill demand, respectively. Biasi and Ma (2022) document

disparities in access to frontier knowledge across institutions of varying selectivity, highlight-

ing how institutional characteristics shape students’ exposure to cutting-edge content. My

results similarly reveal differences in curricular emphasis by selectivity, but with the added

benefit of observing the entire set of courses within specific institutions and fields. This

rich dataset enables me to disentangle broader trends in course supply and institutional re-

sponses to changing student demand, while effectively controlling for institution-specific and

field-specific effects. Moreover, by focusing on course-level adjustments rather than solely

the alignment with frontier knowledge, this paper considers curriculum responses to a wider

range of social, economic, and technological forces that may influence course demand.

9See Altonji et al. (2016) and Patnaik et al. (2021) for recent reviews of this literature.
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3 Data

3.1 Course catalog dataset

To analyze how higher education institutions adjust course offerings in response to changing

student demand, I constructed a unique “course catalog” dataset with detailed course-level

information from a sample of U.S. colleges and universities. The dataset includes 29 million

course sections offered since 1998 from 783 institutions, covering 52% of baccalaureate en-

rollment. I collected the data by scraping universities’ online course catalogs and schedules,

recording details of each course offered during a specific term.10

For a given course, I may observe the name(s) of the instructor(s), the number of sections

offered in a year, enrollment in each section, the format of instruction (whether it is in-person

or online), and a brief text description of the course content. Figure 1 demonstrates the

information contained in a typical observation in my dataset.

The dataset broadly reflects characteristics of the population of US universities. While

the sample is not truly random, as it only includes universities with online course catalogs, the

sample aligns with the broader population in several important respects. Table 1 benchmarks

the characteristics of schools in the catalog sample against the characteristics of the US higher

education system. While the sample aligns closely with the average US four-year institution

in aspects like selectivity, cost, and resources, it does skew towards larger, public institutions.

Extremely small private (often religiously affiliated) institutions are under-represented in this

sample.

The course catalog dataset offers unique advantages. By capturing course-level enroll-

ment and content details, it can measure shifts in student demand years before they manifest

in completed majors. Because a major represents only a portion of a student’s coursework,

course-level data may also provide a more comprehensive snapshot of skill acquisition, re-

flecting the breadth of knowledge students engage with beyond their primary field of study.

Moreover, this dataset provides insight into different margins of course supply — for exam-

ple, whether a university expands enrollment in a program by expanding existing courses

or by creating new courses or eliminating existing courses. These data provide a uniquely

powerful lens for examining short-run supply adjustments that would not be detectable in

completed major counts.

I impose a series of restrictions to refine the raw course catalog dataset for analysis.11

I exclude non-classroom-based courses (e.g., independent study, internships), restrict the

10Appendix A summarizes the inclusion criteria for institutions in the course catalog sample and exercises
to validate the data.

11See Appendix A for details on data processing.
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sample to undergraduate courses, and differentiate between lower- and upper-level courses

based on institutional numbering conventions. I further limit the data to complete academic

years, excluding summer terms. To standardize classification, I categorize over 28,000 depart-

ment names into 54 standardized fields (e.g., History, Education, Economics, Engineering).12

Throughout the analysis, I weight enrollment and course offerings by credit hours.

3.2 Supplemental data sources

I supplement the course data with institution characteristics from the National Center for

Education Statistics’ Integrated Postsecondary Education Data System (IPEDS). For the IV

analysis, I use employment data from IPUMS using the 2009-2018 ACS 1% samples (Ruggles

et al. 2023).

In Section 5, I document changing course content in relation to student demand using

a weighting system to gauge the significance of specific words or phrases based on their

frequency in theme-specific corpora relative to a neutral corpus. I summarize these text

data briefly below; further details are available in Appendix C.

New York Times articles: using the New York Times Developer API, I downloaded

938 thousand articles published between 2000-2022, capturing headlines and abstracts

or text snippets.

Academic journal abstracts: following Biasi and Ma (2022), I compiled 155 thou-

sand abstracts from 180 top-ranked academic journals (by H-index) from 2000-2022,

sourced from Elsevier’s SCOPUS.

Patents: the patent corpus includes the text of 2.5 million patents from the U.S.

Patent and Trademark Office, covering 2000-2020.

Job descriptions: sourced from Lightcast (formerly Burning Glass Technologies),

this corpus includes 2 million job descriptions from a sample of months 2010-2018,

filtered for jobs requiring a college degree.

Social justice writings: this corpus includes texts from the “Issues” and “Policy Po-

sitions” pages of organizations spanning a range of social justice topics: the ACLU, the

American Association of Disabled People, Amnesty International, the Brennan Center,

the Democratic Socialists of America, GLSEN, the NAACP, the National Organiza-

tion of Women, Oxfam, Planned Parenthood, the Southern Poverty Law Center, the

12See Appendix B for details on field standardization.
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Sunrise Movement, and UNICEF. In addition, the corpus includes the full text of six

books listed in the top 25 books on activism and social justice, ranked by Goodreads.

Wikipedia articles: this corpus includes the full text of all English-language pages

published on Wikipedia as of July 1, 2023, using the “Wikimedia dump service,”

totaling 3.8 million documents.

4 Extensive Margin: How universities adjust course quantity

In this section, I document how universities adjust the number of courses offered across

fields of study to meet students’ changing demand for those fields. I first document this

result descriptively, then estimate elasticities using an instrumental variables strategy that

accounts for potential endogeneity of enrollment as a measure of demand.

The focus of this section is estimating long-run elasticities of upper-level courses. Since

universities typically plan over multi-year cycles, it may be impractical to expect short-

term adjustments to changing enrollment. Moreover, enrollment can be noisy, and small

fluctuations might not necessarily represent genuine changes in demand. In my preferred

specification, I estimate course quantity elasticities over 8-year periods. The estimates pre-

sented in this section are course quantity elasticities for upper-level courses.13 I provide

estimates of course quantity elasticity for all courses in the Appendix. These estimates are

substantively similar but less precise.

4.1 Trends in course quantity and enrollment

When demand for a field of study grows, an institution can respond through four strategies:

increasing the number of courses offered, adding sections to existing courses,14 expanding

the capacity of existing sections, or choosing not to react and restricting enrollment.15 The

strategies vary in cost and the extent to which they benefit students. Creating new courses

13Conventionally numbered in the 300-400 range, typically elective courses. I impose this restriction for
two reasons. First, these are the courses over which students have the most autonomy in their selection.
As a result, fluctuations in enrollment for these courses should more accurately reflect students’ changing
demand rather than responses to, for example, a university’s changing core requirements. Second, by the
time students are enrolling in upper-level courses, they have acquired information about their aptitude for a
given field. Any limitations on their ability to enroll in the student’s preferred courses, therefore, may divert
a student from the courses for which they are most suited.

14A course refers to an individual class, typically identified by a unique course ID (e.g., Econ 101 or Econ
102), while a section is a specific offering of that course. For instance, if an institution offers two sections
each of Econ 101 and Econ 102 in both the Fall and Spring semesters, the total would be 8 sections for 2
courses in Economics.

15Similarly, in response to declining demand, institutions may reduce the number of courses, scale back
sections, decrease section capacity, or make no adjustments.
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involves significant fixed costs but can accommodate the broadest student base. Adding

sections requires marginal costs and helps accommodate students who would otherwise be

rationed out. Expanding section capacity is typically the least costly option but may strain

faculty workloads and affect instructional quality. The optimal response depends on the

nature of the demand shock and the institution’s priorities, balancing immediate student

needs with broader objectives.

To empirically assess how universities navigate these complex trade-offs in response to

changing student demand, Figure 2 plots enrollment and course quantity trends across vari-

ous fields of study. The figure plots the growth trends in course enrollment, course quantity,

and section quantity, aggregated into six field categories: Business/Economics, Education,

Humanities, Social Science, STEM (excluding Computer Science), and Computer Science.16

The figure highlights a divergence between course quantity and enrollment growth across

fields in instances where enrollment is decreasing or rapidly increasing. The figure illustrates

a shift in enrollment from Humanities and Education towards fields like Business/Economics,

STEM, and Computer Science. In high-growth fields like Computer Science, course quantity

increased modestly but lagged behind explosive enrollment growth. For fields with declining

enrollment, including Education and the Humanities, course quantity remained relatively

stable despite sharp enrollment declines. In contrast, fields with modest enrollment growth,

such as non-Computer Science STEM and Business/Economics, saw comparable growth in

enrollment and course quantity.17

This asymmetry points to potential rigidities in two directions. First, downward rigidities

make it difficult for institutions to reduce course offerings in response to declining demand.

Structural factors, such as commitments to offering foundational skills and the constraints

imposed by tenure, contribute to the stability of offerings even as enrollment declines. Com-

mitments to instructors on long-term contracts, such as tenured instructors, regardless of

a field’s popularity make the cost of offering courses in less popular fields relatively low.

Second, the limited responsiveness of course quantity to the rapid growth in Computer Sci-

ence enrollment suggests rigidities triggered by surges in demand that outpace institutional

capacity for adjustment.

Although enrollment and course quantity trends align more closely in non-Computer

Science STEM and Business/Economics, this correspondence does not necessarily indicate

16Skilled trades, professional degree-granting fields, and interdisciplinary departments are excluded. Ad-
ditional detail on field classification and selection is available in Appendix B.

17Computer Science is a unique field for its boom-and-bust cycles. The growth in Computer Science
enrollment during the period of my analysis follows a nadir in Computer Science enrollment following the
Dot-Com bubble. It is possible that some institutions had surplus capacity in Computer Science to absorb the
enrollment surge, attenuating some of the immediate need to grow course quantity for the 2010s enrollment
wave.
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highly elastic adjustments. Enrollment alone is an imperfect proxy for demand, as it does not

capture unmet demand from students unable to enroll in preferred courses due to rationing

or insufficient offerings. I address this limitation in the following section.

4.2 Empirical Strategy

4.2.1 OLS Specification

In this section, I estimate how the quantity of courses responds to changes in students’

demand across different fields of study. Equation 1 shows the OLS specification I use to

estimate course quantity elasticity:

∆yi,s,t′ = α∆x
(avg)
i,t + β∆x

(field)
i,s,t + ϵi,s,t (1)

∆x
(field)
i,s,t = ∆xi,s,t −∆x

(avg)
i,t (2)

The dependent variable, ∆yi,s,t′ , denotes the percentage change in the quantity of courses

offered by institution i in field s over period t′. I calculate this change as a long log difference

in the credit-weighted number of courses offered across these years.18 The log difference

specification differences out any fixed institutional characteristics. Thus, any controls I

introduce should pertain to time-varying attributes of universities. To this end, I control for

the university’s average enrollment growth rate ∆x
(avg)
i,t , ensuring that the analysis accounts

for shifts in course quantity tied to broader university-level changes.

After controlling for the influence of overall enrollment growth on course quantity, the

parameter of interest, β, represents the elasticity of course quantity to relative shifts in

enrollment across fields. For clarity, the field-specific enrollment growth rate is adjusted by

subtracting the institution’s average enrollment growth rate, resulting in ∆x
(field)
i,s,t .19

18I credit-weight both changes in course quantity and changes in enrollment.
19De-meaning is important when testing whether course quantity elasticity differs for fields growing or

shrinking relative to the university. Measuring course supply responses to relative, rather than absolute,
enrollment changes isolates how universities adjust to field-specific demand shifts. For example, consider
two universities where a field grows by 5%: if overall enrollment at the first university increases by 25%,
that field is growing more slowly than the institution as a whole and may not warrant expansion beyond the
expansion necessary to support the growing university overall. In contrast, if overall enrollment shrinks by
25%, the field is a relative outlier, making it a more natural target for investment.
However, differencing out the institution’s overall growth rate may introduce some bias to the extent that

overall institutional growth could itself be responsive to field-specific demand shifts. If, for example, demand
for seats at technical universities increases in tandem with demand for STEM fields at those institutions,
de-meaning could obscure the effect of broader trends on course supply. Given that most institutions in my
sample are regional public universities, where enrollment is less likely to be driven by specialized field-specific
demand shifts, the potential for this bias is limited. Nevertheless, I test an alternative specification, which I
summarize in Appendix Tables A-8 and A-9, estimating course supply elasticity using absolute enrollment
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In the data, course quantity and course enrollment are directly linked. To disentangle

changes in enrollment that are demand-driven from changes that are entirely due to changes

in the courses offered, I impose a one-year offset o between the period over which I measure

changes in enrollment (t in Equation 1) and the period over which I measure changes in

course quantity (t′ = t + o in Equation 1). To be concrete, if analyzing enrollment and

course quantity changes over an 8-year window, I would regress the change in course quantity

from 2010-11 to 2018-19 on enrollment changes from 2009-10 to 2017-18. Appendix Table

A-7 estimates course quantity elasticities under alternative offset and lag windows - neither

choice affects the results substantively.

4.2.2 IV Specification

Particularly in cases where universities choose not to accommodate students’ changing de-

mand, we might be concerned that enrollment changes are driven or constrained by course

supply rather than student demand. To illustrate this concern, consider a scenario where a

university’s Economics Department experiences a sudden surge in demand for its courses.

In response, the university does increase its course quantity but only enough to accommo-

date a fraction of the new demand. For example, the university might experience a demand

increase equivalent to 200 new students but expand course quantity to accommodate only

100 of them. In this case, quantity is highly responsive to changing enrollment but the

university only addresses half of the new demand for Economics courses.20 These forms of

non-response will bias my OLS estimates of course quantity elasticity towards making the

university appear more responsive to changing demand than it actually is.

To estimate a causal relationship between changes in student demand and changes in

course quantity, I use a shift-share instrumental variables (IV) strategy that identifies a por-

tion of enrollment changes solely attributable to shifting student preferences, independent

of actions taken by the university. The instrument uses two sources of variation: variation

in employment growth prospects across fields (s) and differential exposure to changing em-

ployment growth prospects in different parts of the country (based on the Census Division

r in which school i is located, which I hereafter refer to as a “region”).21

changes instead of de-meaned changes. These estimates are substantively similar and, if anything, suggest
that universities are less elastic than the estimates presented in this section.

20Further, to the extent that these students are diverted to courses in other fields, the university may
appear responsive to inflated demand for other fields when, in reality, students are taking classes they would
ideally prefer not to take.

21I construct regions at the Census Division level because this is the level of regional variation that produces
the strongest first-stage. Contemporaneous work by Conzelmann et al. (2023) uses a similar instrument to
study how students and universities respond to changing demand for college graduates in the labor market.
Our analyses differ in the sense that they study the direct effect of changing job demand on completed majors
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Because labor market growth is driven by macroeconomic forces rather than university

actions, employment shifts serve as a plausibly exogenous shock to student preferences. The

instrument captures differential employment growth across fields net of region-wide labor

market shocks. I estimate course quantity elasticity during the period 2009-10 to 2018-19,

the period between the Great Recession and the Covid-19 pandemic. I estimate this elasticity

with enrollment and course quantity changes measured over a single 8-year window with a

one-year offset. I construct the instrument using data from the 2009 and 2017 American

Community Surveys (ACS),22 following Equation 3 below:

∆Es,r,t =
J∑

j=1

ϕs,j,r,t0 (lnEj,r,t1 − lnEj,r,t0) (3)

zs,r,t = ∆Es,r,t −∆Er,t (4)

The instrument fixes ACS respondents’ college major (s) to occupation (j) shares (ϕs,j,r,t0) in

2009 (t0), then projects the change in log employment (∆Es,r,t) as the average employment

growth rate of college graduates in each occupation (4-digit OCC) between 2009 and 2017

(t1). I weight the log employment growth by the fixed major-to-occupation shares.

To get the instrument zs,r,t, I subtract from ∆Es,r,t the regional average employment

growth rate for college graduates, ∆Er,t. The resulting instrument isolates differential em-

ployment growth across fields relative to the regional average. Because each university is

small relative to its Census division — comprising 3–8 states and tens of millions of peo-

ple — its direct influence on regional employment trends should be minimal. To further

ensure that changing course quantity does not affect labor market measurements, I restrict

the instrument to workers aged 30–65, who generally completed their education before the

baseline year. The instrument values range from -0.208 to 0.188 across field-regions, with

larger values indicating relatively stronger job prospects in the field.23

and course quantity. In contrast, my analysis focuses primarily on how changing labor market conditions
impact course quantity through their effects on students’ demand. Conzelmann et al. use job postings data
to measure changing demand in local labor markets for students from different majors, then measure the
exposure of each institution in their sample to these changes using shares of graduates from the institution
in each labor market (using data from LinkedIn). Using their data, I confirm that on average, more than
80% of the graduates from the schools in my sample work in the same Census division where their respective
institutions are located (Conzelmann et al. 2022).

22With the one-year offset, I am measuring enrollment changes from 2009-10 to 2017-18. Because the ACS
is collected on a calendar year cycle, the collection period bisects the academic year. I align the instrument
to the end of the academic year; results are unchanged if I align the instrument to the start of the academic
year.

23The period of my analysis contains three important trends in labor market conditions that drive much
of the variation in projected employment growth across fields. First, innovation in mobile technology and
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To illustrate how the instrument captures field-by-region differences in changing employ-

ment growth prospects, consider the construction of the instrument for Computer Science

and Education at a single university located in the South Atlantic Division. In the 2010

ACS, approximately half of workers in the South Atlantic region with Computer Science

degrees worked as programmers/engineers, nearly 20% worked in technical administrative

roles, 10% worked in sales, and the remaining 20% worked in other occupations.From 2010

to 2018, employment in these occupations grew at a weighted rate of 30.9%, which was 8.1

percentage points faster than the regional average. Similarly, 70% of workers in the South

Atlantic region with Education degrees worked in education or education administration

and the remaining 30% worked in other occupations. Employment in these jobs grew 7.9

percentage points less than the regional average during the same period. The instrument

takes values 0.081 and -0.079 for Computer Science and Education in the South Atlantic

Division, respectively.

To illustrate how the instrument uses variation across regions, consider a single field,

Computer Science, offered at two different universities: one located at the same institution

as in the preceding example and one located in the Pacific Division. In 2010, Computer

Science graduates flowed into similar jobs in similar proportions in the two regions. How-

ever, relative employment growth in these jobs was much faster in the Pacific Division (13.7

percentage points faster than the regional average) compared to the South Atlantic Division

(8.1 percentage points). The instrument takes values of 0.137 and 0.081, respectively, re-

flecting the stronger labor market-driven push into Computer Science courses in the Pacific

Division compared to the South Atlantic Division.

I estimate the IV model using two-stage least squares. In the first stage, I estimate the

relationship between the de-meaned percent change in enrollment (∆x
(field)
i,s,r ) in field s at

college i from 2009-10 to 2017-18 and the relative employment growth (zs,r) of occupations

typical for graduates of major s in region r:

∆x
(field)
i,s,r,t = ϕ∆x

(avg)
i,r,t + κzs,r,t + ηi,s,r,t (5)

In the second stage, I use the first stage’s predicted values, denoted as ∆̂x
(field)
i,s,r,t , to instrument

for students’ changing demand. I then estimate a regression of the percentage change in the

number of courses in field s at college i between 2010-11 and 2018-19 (∆yi,s,r,t) on this

growing use of data fueled growth in technology jobs. Second, stagnant earnings and declining job satisfaction
contributed to declining interest in the teaching profession (e.g., Kraft et al. 2020). Third, the passage of the
Affordable Care Act in 2010 created new demand in healthcare. Fields and regions differ in their exposure
to these changes, which creates variation for my estimation.
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instrumented enrollment change:

∆yi,s,r,t′ = α∆x
(avg)
i,r,t + β∆̂x

(field)
i,s,r,t + ϵi,s,r,t (6)

The second stage regression produces an estimate of the causal effect of changes in demand

on changes in course quantity.

The IV strategy allows me to estimate demand when enrollment is rationed (due to capac-

ity constraints) or inflated (due to institutional steering) by first estimating the relationship

between employment and enrollment growth in cases where enrollment accurately reflects

demand, then using this relationship to predict demand where enrollment is constrained or

inflated. If rationing or inflation were widespread, this would bias the first-stage estimates

and limit the IV’s usefulness. However, as long as many fields experience demand-driven

enrollment changes without severe supply constraints, the estimated relationship between

employment growth and enrollment remains informative, allowing me to reasonably project

demand shifts in constrained cases.

While some universities may be unable to fully accommodate rising demand, supply

constraints should attenuate rather than bias the first-stage relationship unless they are

systematically correlated with labor market trends. To the extent that supply constraints

prevent the full realization of demand shifts, my IV estimates may still overstate university

responsiveness to student demand changes, though the overall bias should be limited if

rationed or inflated cases are a modest share of the sample.

For identification, the instrument must satisfy assumptions of monotonicity, indepen-

dence, relevance, and the exclusion restriction. Monotonicity requires that when labor mar-

ket conditions improve for a field, no school’s enrollment demand in that field decreases as

a direct result. In other words, every institution’s demand for the field is weakly pushed up

when the instrument increases. Monotonicity is inherently untestable in this setting because

enrollment is an equilibrium outcome affected by both demand and supply constraints.24

However, a violation would require a counterintuitive pattern: that improved job prospects

in a field systematically reduce demand for that field. Such a violation would run contrary

to theory on students’ motivation for investing in human capital or require that universities

actively reduce course offerings in high-demand fields.

Independence requires that employment growth be uncorrelated with unobserved factors

influencing course quantity. This assumption holds if variation in employment growth across

24Appendix Figure A-5 provides suggestive evidence that the relationship between employment growth
and enrollment is strongly positive, consistent with the monotonicity assumption. While some variation
exists, there is little evidence of systematic defiers.
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fields is driven by broader labor market forces rather than endogenous university decisions.

Labor market conditions, particularly at the scale of a Census division, are plausibly external

to individual universities’ decision-making. To further mitigate concerns about endogeneity,

I select a period of analysis — spanning from the Great Recession to the start of the Covid-

19 pandemic — that represents a distinct labor market phase, reducing the likelihood that

universities had advance foresight into employment trends during this window. Additionally,

I construct the instrument using employment shifts and occupational shares for workers

above age 30, ensuring that the observed labor market changes reflect pre-existing trends in

workforce composition rather than responses to recent course supply decisions.

I demonstrate first stage relevance through a strong first stage, with results summarized

in Appendix Table A-2. The cluster-robust first-stage F-statistic of 125, reported in Table

2, confirms the strength of the instrument.25

The exclusion restriction requires that changes in labor market opportunities affect course

quantity solely through their impact on student demand. Admittedly, this is a big assump-

tion, particularly for fields experiencing growing demand. In Appendix D, I describe in detail

three potential violations of the exclusion restriction and provide evidence of the importance

of these potential violations. The first concern is that universities are better able to forecast

labor market trends and adjust supply in anticipation of future demand. To test for this, I

show that there is no evidence that universities are expanding course capacity in two of the

highest-growth fields — Computer Science and Engineering — before enrollment growth is

realized (Appendix Figure A-7). A second potential concern is that labor market changes

could also affect faculty hiring, indirectly influencing course quantity. I show that excluding

outlier field-regions with extreme employment shifts does not materially change the esti-

mates, suggesting that this channel is not driving the results. A third concern would arise if

labor market conditions influence local firms or donors to invest in expanding fields linked to

future employment growth. I argue that such influence is far less common at the institutions

and fields of focus in this paper than at two-year institutions and in trade/professional fields,

which I exclude from the analysis.26

25As a validation exercise, I also estimate the first stage regression using completed majors, reported in
IPEDS data, as the measure of changing enrollment. Completed majors are essentially as responsive to
changing occupation growth as enrollment in upper-level courses. This may suggest that changing condi-
tions in the labor market push marginal students to complete a major with improving employment growth
prospects, but these students still take elective classes in fields with poorer employment growth prospects.

26Recent work in the shift-share literature formalizes the identification assumptions underlying shift-share
instruments (e.g., Goldsmith-Pinkham et al. (2020), Borusyak et al. (2022)). Goldsmith-Pinkham et al.
(2020) demonstrates that the Bartik instrument is analogous to using shares as instruments, with the ex-
ogenous growth rates primarily determining the instrument’s relevance. In this paper, the “shares” are
major-to-occupation shares rather than employment shares.
Identification could be compromised if these shares correlate with external factors affecting both student
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For the IV, I cluster standard errors at both the institution and field-by-Census division

level to address the potential serial correlation within a field-region. Because my focus is on

estimating how schools adjust, on average, to changing student enrollment, I assign equal

weight to each school in the regressions. Within each school, I assign weight to the field-level

observations in proportion to the field-level enrollment in the base year. This means I give

more weight within the institution to fields with greater enrollment to improve precision.

4.3 Results

Tables 2 and 3 summarize OLS and IV estimates for the course quantity elasticity regressions

for the number of courses and number of sections, respectively. Columns 1-7 summarize OLS

estimates from the elasticity estimation described in Equation 1. I estimate course quantity

elasticities over periods ranging from 2 to 8 years. In each pair of columns, I estimate course

quantity elasticity over rolling periods (e.g., 2004-05 to 2006-07; 2005-07 to 2007-08) and

staggered periods (e.g., 2004-05 to 2006-07; 2007-08 to 2009-10). The first row of the table

summarizes course quantity changes in response to the overall growth/decline in enrollment

at the university and the second row, which contains the estimates of interest, summarizes

course quantity changes in response to a field’s growth/decline in enrollment relative to the

university overall.

The OLS estimates demonstrate that course quantity responds less than one-for-one to

changing enrollment in both the short and long run. The two-year course quantity elasticity

is approximately 0.21; course quantity becomes slightly more elastic (0.41) when measured

using eight-year lags. The gradual increase in course quantity elasticity suggests that uni-

versities are more responsive to sustained enrollment trends than to episodic changes in

enrollment. The quantity of sections is more elastic than the quantity of courses, suggesting

that universities accommodate student demand more by modifying the frequency of offerings

in existing courses rather than the outright creation/elimination of courses.27

demand and course quantity. Three design features mitigate concerns of endogeneity: first, the shares are
anchored to a base period, ensuring independence from contemporaneous labor market shifts; second, the
instrument uses major-to-occupation shares and employment growth rates of workers aged 30-65, which
exclude recent graduates who might be affected by course offerings during this period; and third, regions
are defined at the Census division level, where any individual university’s graduates represent a small share
of the region’s labor force. In Appendix D, I summarize a robustness test that uses major-to-occupation
shares from all Census divisions except the one where the university is located. The results remain largely
consistent with the main findings.

27For example, a department may begin offering a popular course in both the Fall and Spring semesters,
instead of just in the Fall, or increase the number of sections available in a single semester. This type of
adjustment is more common at larger universities, which may offer many elective courses varying in size and
add sections in the most popular courses, and at less-selective universities, which often offer fewer elective
courses each with lower enrollment caps.
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Having argued in Section 4.2.2 that enrollment changes may insufficiently reflect changes

in student demand, I summarize my IV estimates in Column 8 of Tables 2 and 3.28 I estimate

these elasticities using a single difference on the period from 2009-10 to 2018-19, following the

Great Recession and ending in the last full academic year prior to the Covid-19 pandemic. For

comparison, Column 7 in each table provides the OLS estimates corresponding to quantity

and enrollment changes during this same period.

The IV estimates suggest that fields expand course quantity 2.1% for a 10% increase in

demand. To illustrate, a department the size of Stanford’s Economics Department would

add a new course if the enrollment in upper-level courses rises by 136 seats. This enrollment

increase corresponds to an underlying demand increase for upper-level Economics classes of

256 seats.29 Columns 7 and 8 in Table 3 summarize estimates of the elasticity of the number

of sections offered on changing enrollment. Although more elastic than courses, section

quantity also adjusts less than one-for-one. Fields expand section quantity 5.3% with a 10%

increase in demand.

Comparing the values in Columns 7 and 8, the OLS estimates are biased higher than

the IV estimates. Because enrollment is an equilibrium outcome, changes in enrollment may

reflect both students’ changing demand for courses and course supply decisions unrelated to

student demand. I cannot observe, for example, demand from students who are rationed out

of courses they would prefer to take. Without accounting for this unmet demand, course

quantity responses will appear to align better with students’ changing demand. Similarly,

the university may introduce policies like distribution requirements that boost enrollment

in courses that students otherwise might prefer not to take. Such policies would attenuate

enrollment shifts from declining fields to growing fields. Considering these issues, we might

expect the bias in the OLS estimates in the direction of greater course quantity elasticity

relative to the IV estimates.

4.4 Asymmetry in course quantity elasticity

The model in Equation 1 imposes that course quantity response to increasing enrollment

in a field is exactly the opposite of its response to a comparable decrease. However, the

28I present the reduced form estimates in Appendix Table A-4. In the reduced form, a 10% increase in
relative employment growth for a given field within a university’s region is associated with a 9.4% increase
in course quantity.

29In 2018-19, Stanford’s Economics department offered 125 credits of upper-level courses and student
enrollment totaled 6747 credit hours. A one-course increase in courses supplied would be equivalent to a
4% increase, which, according to the estimates in Table 2, is the result of an 10.1% increase in enrollment
(681 student-credit hours) or a 19.0% increase in demand (1282 student-credit hours). Dividing by 5 credit
hours per course gives the values cited above. Some of the increased enrollment derives mechanically from
enrollment in the new course.
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practical costs of growing versus shrinking a field can differ. Specifically, considering that

many faculty are employed on long-term contracts, the university might incur little to no

marginal cost in allowing faculty in a field experiencing declining enrollment to teach their

courses. Furthermore, descriptive evidence from Figure 2 suggests potential asymmetry in

course quantity responses to enrollment changes.

Thus, I consider a more flexible model that allows course quantity elasticity to differ

based on whether a field is growing slower or faster than the institution average (∆x
(avg)
i ).30

I estimate the new model:

∆yi,s = α∆x
(avg)
i + β1∆x

(field)
i,s I(∆x

(field)
i,s < 0) + β2∆x

(field)
i,s I(∆x

(field)
i,s > 0) + ϵi,s (7)

where the parameters of interest, β1 and β2, represent the course quantity elasticities when

enrollment is growing slower or faster than the institution average, respectively.31

I augment the IV model in Equation 6 to allow for asymmetry in course quantity responses

to enrollment changes above and below the institution average. In the extended first stage,

I specify a model that allows the coefficients linking changes in employment to changes in

enrollment to vary for fields experiencing relatively growing versus shrinking employment.

In the second stage, I incorporate this asymmetry by using the predicted values from the

first stage as in the following equation:

∆̂x
(field)
i,s = ∆x

(avg)
i,r + κ1zs,rI(zs,r < 0) + κ2zs,rI(zs,r > 0) + ξi,s,r (8)

∆yi,s = α∆x
(avg)
i + β1∆̂x

(field)
i,s I(∆̂x

(field)
i,s < 0) + β2∆̂x

(field)
i,s I(∆̂x

(field)
i,s > 0) + ϵi,s (9)

Tables 4 and 5 present OLS and IV estimates of course and section quantity elasticities

from specifications that distinguish growing and shrinking fields. The first row reports the

elasticity of course quantity with respect to overall enrollment changes at the institution;

subsequent rows report elasticities separately for fields growing faster or slower than the

institution’s average enrollment growth. Columns 1–7 contain OLS estimates, and Column

8 reports IV estimates cluster-robust first-stage F-statistic. The table also includes p-values

testing the equality of elasticities for growing and shrinking fields.

Overall, course quantity expands more in fields experiencing rising demand than in those

facing declining demand. Consistent with results in the previous section, course quantity

30For simplicity, I omit time subscripts, which I use identically to the base model in Equation 1.
31I consider an alternative specification in Appendix Tables ?? and ?? that estimates elasticities based on

whether the field is growing or declining in absolute terms, rather than relative to the institution average.
The results are substantively similar.
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elasticity increases when measured over longer time horizons. Over time, the gap between

course quantity elasticities for growing and shrinking fields widens, and the estimates become

statistically distinguishable. This pattern suggests that short-term constraints on course

supply — such as pre-commitments to instructor headcount and advance scheduling — bind

asymmetrically over the long run, affecting fields with shrinking enrollment more rigidly than

growing ones. Interestingly, while course quantity elasticity diverges over time, differences

in section quantity elasticity between growing and shrinking fields are less pronounced and

frequently not statistically distinguishable.

Column 8 summarizes IV estimates of asymmetric course quantity elasticity.32 The IV

estimates suggest an even more dramatic gap in course quantity responses to fields with

growing vs shrinking demand. The IV estimates in Table 4 indicate that course quantity

increases by 3.5% for a field growing 10% faster than the institution’s overall rate, while it

decreases by 0.8% when the growth is 10% slower. Similarly, the IV results in Table 5 suggest

that section quantity rises by 5.6% when a field’s growth surpasses the institution’s rate by

10%, but drops by 5.0% when it lags behind by the same measure.33 As with the linear

model, the OLS estimates appear larger than the IV estimates. However, the extent of this

bias is much larger in the case of declining demand relative to growing demand. This result

suggests that the shifting of enrollment into less-preferred fields may prop up fields that

otherwise would not have sufficient organic demand to support their full course offerings.34

4.5 Heterogeneity

Universities of different types face different incentives and constraints when responding to

changes in student demand. To explore these differences, I partition my sample of four-year

universities by their 2010-11 Carnegie classification into R1 universities (very high research

activity), R2 universities (high research activity), liberal arts colleges, and teaching-focused

institutions (all other four-year institutions).35 I modify the baseline regression equations

32Due to the nonlinear transformation of the first stage estimates, I calculate bootstrapped standard errors
for the IV using 1, 000 repetitions of the estimation, resampling region-by-field clusters in each iteration.

33In the reduced form (Appendix Table A-4), a 10% increase in employment for a given field is associated
with a 18.9% increase in course quantity, while a 10% decrease in employment growth is associated with a
3.3% reduction in course quantity.

34This reallocation may occur through distribution requirements that require students to take courses in
low-demand fields or may arise naturally when students are unable to enroll in courses in their preferred
fields.

35The Carnegie Classification categorizes institutions based on research resources and activity levels. In
2010, 108 institutions were classified as R1 (very high research activity), including elite private universities,
state flagships, and other doctoral-granting institutions. R2 institutions (high research activity) conduct
less intensive research but still offer doctoral programs. Liberal arts colleges are selective, teaching-focused
institutions that prioritize small class sizes. The remaining category includes a mix of teaching-oriented and
less selective regional public and private universities.
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to include interaction terms between the relative change in course quantity (∆x
(field)
i,s,t ) and

dummy variables for the university’s Carnegie classification.36

Figure 3 shows that R1 universities are more elastic in adjusting course quantity in re-

sponse to changing student demand compared to most other university types. This higher

elasticity is primarily driven by their significantly greater responsiveness to growing enroll-

ment in high-growth fields. Conversely, when enrollment declines, R1 universities are about

as responsive as R2 and liberal arts colleges, while teaching-focused institutions tend to be

more elastic, discontinuing courses in fields with shrinking enrollment.

The bottom panel of Figure 3 compares section-level elasticities. Here, liberal arts institu-

tions are less responsive to changes in enrollment than R1 universities, both when enrollment

is growing and shrinking. In contrast, teaching-focused universities are more likely to reduce

the number of sections offered in response to declining enrollment. While R1 universities

exhibit greater elasticity in adding new courses for growing fields, they are similar to R2 and

teaching-focused institutions in their responsiveness to section-level adjustments.

This heterogeneity in course quantity elasticity suggests that institutional objectives and

resource constraints may drive how universities manage growing and shrinking demand. R1

universities typically respond to growing demand by creating new courses, which may reflect

an emphasis on curriculum innovation and an ability to cater to well-prepared students

who can benefit from emerging fields. These institutions are also likely motivated by the

need to maintain competitive research and academic standings by offering a diverse range of

cutting-edge courses.

On the other hand, R2 and teaching-focused institutions primarily add sections to existing

courses in response to growing demand. This approach is less costly and serves students who

would otherwise be shut out of oversubscribed courses. For these institutions, resource

constraints likely limit the capacity to create entirely new courses, leading to a more efficient

but less flexible response to changes in student preferences.

When facing declining demand, liberal arts colleges tend to maintain sections in shrinking

fields, resulting in smaller class sizes but potentially less efficient resource allocation. This

strategy may reflect a commitment to providing a broad-based education, even at the expense

of larger courses in growing fields. In contrast, teaching-focused institutions are more likely to

reduce course and section offerings in response to declining enrollment, suggesting a greater

sensitivity to financial and operational constraints.

These findings highlight the trade-offs between innovation and efficiency in higher ed-

ucation. R1 universities’ flexibility allows them to adapt to changing student demand by

36The analysis in this section uses 8-year course quantity elasticities with a one-year offset. I estimate the
OLS version of the model to maximize the number of institutions and periods.

21



expanding course offerings, potentially providing students with greater exposure to emerg-

ing fields. However, this adaptability comes with higher costs, which less research-intensive

universities mitigate by focusing on adding sections rather than new courses.

Appendix Figures A-9 and A-10 summarize heterogeneity in course quantity elasticity

along two related dimensions: institution size and control (public vs. private). The most

striking result by size is that the smallest institutions are the least responsive in adjusting

section supply—particularly in reducing sections—in response to enrollment changes. This

is unsurprising, as smaller institutions typically offer fewer sections per course, limiting their

flexibility. The largest institutions are somewhat less elastic in expanding course offerings

in response to enrollment growth, but this is partly offset by their ability to increase the

number of sections within existing courses in high-growth fields.

Course quantity at private universities is substantially more responsive to changes in

enrollment than at public universities, but this elasticity is driven entirely by the ability to

reduce course supply in fields experiencing declining enrollment. In contrast, section supply

at private universities is less elastic in expanding during periods of enrollment growth. This

pattern likely reflects the same constraints observed at small institutions, since the private

universities in my sample are, on average, much smaller than their public counterparts.37

4.6 Discussion

Course quantity adjusts far less than one-for-one to shifts in student demand, particularly

in fields experiencing declining enrollment. This inelasticity has consequences for both edu-

cational quality and student decision-making. When course inelasticity leads to non-supply,

students may be deterred from pursuing their preferred fields. Estimates in Appendix E sug-

gest that seat rationing, as implied by the IV estimates, reduced the number of completed

Computer Science and Engineering majors by 2.5% and 2.3%, respectively, between 2009–10

and 2018–19.

Even when courses remain available, inelasticity can distort class sizes, leading to crowd-

ing in high-demand fields and sparse enrollment in others. In Appendix Figure A-4, for

example, I show that average section sizes in Computer Science have grown by over 40%

since 2010, while Education section sizes have shrunk by nearly 15%. While universities

may expand capacity within existing courses, these adjustments have limits, particularly for

upper-level courses designed for smaller cohorts.38

37Private universities in my sample include elite research universities and liberal arts colleges, but most are
small, religiously affiliated institutions. While the observed differences may reflect the effects of institutional
control, they may also stem from broader differences in institutional mission and student populations, making
direct comparisons between public and private institutions less straightforward.

38Large class sizes are associated with lower student evaluations (e.g., Bedard and Kuhn 2008, Monks and
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Such rigidities may also contribute to curricular misalignment, particularly in fast-changing

fields where demand for new skills outpaces institutional adaptation. Students may graduate

with less relevant training,39 or with limited exposure to emerging topics. At the same time,

if course offerings expand in shrinking fields, per-student instructional costs rise—costs that

may ultimately fall on students.

A natural concern — particularly given that universities partially accommodate enroll-

ment growth by increasing class sizes — is that institutions may already have sufficient slack

capacity, especially in fields with growing enrollment. In this view, course quantity need

not respond directly to shifting demand, since underutilized courses and sections can ab-

sorb surges. This is plausible in some cases, particularly where universities maintain broad

curricula for disciplinary or accreditation reasons.

However, several features of the analysis suggest slack capacity cannot fully explain the

limited responsiveness observed. First, the analysis focuses on upper-level courses, where the

university has discretion over course offerings and students have discretion over enrollment.40

Second, the fact that course supply expands at all in response to growing demand — limited

though that expansion may be — suggests that the existing stock of courses is insufficient

to absorb surges and that universities see value in expanding what students can learn in

high-demand fields.

Even if course elasticity is not a perfect proxy for seat availability, it functions as a

revealed measure of institutional prioritization: it shows whether universities are directing

new instructional resources to areas under the greatest enrollment pressure. The estimates

here suggest they are doing so—but only partially.

5 Intensive Margin: How fields adjust course content

A field can respond to changing student demand by updating course content, such as re-

placing a course teaching outdated content with one that emphasizes high-demand content.

In the preceding section, an institution’s only response to students’ changing demand was

the creation or elimination of courses within a given field of study. Fields that modify

their courses in response to changing demand could attenuate enrollment shifts and relieve

pressure to reallocate resources from shrinking to growing fields. This section explores how

Schmidt 2011), though evidence on their effects on student performance is mixed (e.g., Kokkelenberg et al.
2008, Bandiera et al. 2010).

39Though there is a trade-off between preparing for immediate job market demands and developing durable
skills that remain valuable long term (Deming and Noray 2020).

40For example, a university might need to maintain slack offerings in Calculus or U.S. History to meet
accreditation or service requirements, but the provision of more advanced electives is likely to be more
discretionary.
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college course content adapts to align with student demand.

5.1 Measuring course content through course descriptions

To measure the content of courses, I use the course description included with many course

catalog entries (for example, see Figure 1). Course descriptions are short — typically fewer

than 50 words — text summaries of course content that highlight topics covered in a class,

skills students may develop, and the work students will produce. This rich insight into what

students learn in their college classes is a unique feature of the course catalog dataset and

enables me to identify what distinguishes or connects fields, compare fields across institutions,

and track their evolution over time. Importantly, the longitudinal structure of my data

facilitates comparisons within an institution and field over time.41

Although course descriptions provide insight into an institution’s educational offerings,

they possess a few limitations. For example, instructors may not update these descriptions

frequently. In such cases, the description might not reflect recent changes in course content.42

To the extent that changes in course content are not contemporaneous with changes in course

descriptions, the timing of any individual course description change may be unreliable. In

my data, most of the changes to a field come through the introduction of new courses,

before a course has an opportunity to diverge from the course description, and through the

discontinuation of existing courses. I also study changes over a relatively long period of time

to avoid reliance on changes in any individual year.

I analyze course descriptions by adapting techniques from Natural Language Processing

(NLP). These methods represent the course description for each course c offered in field

s at institution i in year t as a vector of words.43 I then represent each document as a

W × 1 vector vc,i,s,t with length (W ) equal to the size of the dictionary of unique tokens

(w ∈ W ). Typically, tokens are single words. However, I treat common phrases as distinct

single tokens. For example, I treat “climate change” as a single token distinct from “climate”

or “change”; likewise, “social media” is distinct from “social” or “media.”

The values in vc,i,s,t are assigned according to their Term Frequency-Inverse Document

41The focus of this section is on permanently-offered courses. Some universities offer ad hoc “special
topics” or seminar courses with a curriculum that can be changed more flexibly. I exclude these courses
because the course descriptions and titles typically do not update when the underlying topic changes. These
courses account for less than 1% of upper-level enrollment, but nevertheless represent a margin of adjustment
that my analysis is unable to measure.

42In my data, 62% of courses are modified or discontinued over a ten-year period (see Appendix Figure
A-12).

43I apply standard pre-processing to each course description. For example, I remove punctuation, standard-
ize capitalization, remove overly-common “stopwords” (e.g., “the” and “is”), and lemmatize all words (e.g.,
transform “learns” or “learning” to “learn”). The complete processing procedure is described in Appendix
C.
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Frequency (TF-IDF) weight, which is a measure of the distinctiveness of a given token to

a given document. TF-IDF is the product of the Term Frequency (TF), a given token’s

share of all tokens in a document, and Inverse Document Frequency (IDF), measuring a

token’s distinctiveness across all documents. Intuitively, TF captures the intensity of a given

skill/topic in a course or field. For example, courses in Economics more typically include

the tokens “economics” and “regression analysis” than “Shakespeare” or “cybersecurity.”

Variation in the occurrence of different words/phrases is captured by the TF weight applied

to each token for a given course. IDF assigns more weight to uncommon tokens and lower

weight to common words. This ensures that comparisons between courses emphasize mean-

ingful differences in content rather than variations in generic language. For example, the

IDF weight emphasizes the contribution of less common tokens, like “economics” and “re-

gression analysis,” over words that appear commonly in course descriptions, like “student”

or “exam.”44

5.2 Validating course description data

To validate the effectiveness of course descriptions in assessing course content, it is essential

to demonstrate that they provide meaningful insights about courses. Specifically, variation in

topics or skills across fields or over time should reflect genuine changes, rather than differences

in terminology describing similar concepts. This section aims to show descriptively that the

text data and methods reveal differences that are both meaningful and intuitive.

Distinctive tokens in course descriptions align closely with the skills and concepts em-

phasized in each field, demonstrating that these descriptions capture meaningful differences

in content. Figure 4 applies the NLP methods outlined in the previous section to illustrate

these differences, displaying the 25 most distinctive tokens for a sample of fields based on

course descriptions from the 2022–23 academic year.45 The results align intuitively with

disciplinary focus: for example, English courses emphasize literature, reading, and writing,

while Computer Science courses highlight programming and data analysis. These distinc-

tive tokens capture both skills (e.g., reading, programming) and concepts (e.g., markets,

theorems), reinforcing the validity of using course descriptions to analyze curricular content.

The effectiveness of the text analysis methods depends on their ability to detect sub-

stantive changes in course content over time, rather than merely shifts in terminology. For

example, adding “climate change” to a course description where no equivalent concept pre-

44For more detail for a more detail on the construction of the TF-IDF weights and stylized example of
how vc,i,s,t is constructed, see Appendix C.

45I collapse course descriptions into a single document for each institution-field, then represent each doc-
ument as a TF-IDF vector. I average across institutions to get field-level values, then select the 25 tokens
with highest value for each field.
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viously existed signifies a meaningful change. In contrast, replacing “global warming” with

“climate change” would represent a terminological update rather than a substantial alter-

ation to the course.

In Figure 5, I demonstrate that changes in course description text represent meaningful

differences in course content. For each field, I list 15 tokens distinctive of courses that

have been discontinued over the last decade and 15 tokens distinctive of courses that have

been introduced over the last decade. The figure highlights that the text data and methods

pick up substantive changes to course content rather than changes in jargon. For example,

recently created Economics courses emphasize data analysis, inequality, and topics in applied

economics more than discontinued courses, which emphasize topics related to international

economics and monetary policy. Similarly, Computer Science has shifted from hardware-

oriented courses towards data science, cybersecurity, and machine learning.

5.3 Characterizing how curriculum changes

Having described the course descriptions, I next develop a measure of “alignment” between

course content and student demand and analyze how this measure evolves over time. Lacking

a direct measure of students’ preferences for specific topics or skills, I measure the changing

relationship between course content and a broad set of themes relevant to students’ objectives

and the mission of the university. Specifically, I focus on five themes: job relevance (as a

response to economic changes); current events relevance and social justice46 relevance (as a

response to societal changes); and technology and scholarship relevance (as a response to

technological change and innovation).47

I relate course descriptions to these themes by developing a weighting scheme that cap-

tures a token’s importance to texts highly connected to that theme. For example, “oppres-

sion” is a word that might appear frequently in social justice texts and “machine” is a word

that might appear frequently in technology texts, but it is unlikely for the word “machine”

to frequently appear in social justice texts, and vice versa. To capture the career relevance of

a given token, I measure its frequency in job descriptions. To capture a token’s importance

to current events, I measure its frequency in the text of front-page articles published by

46The period of this analysis coincides with a well-documented increase in Diversity, Equity, and Inclusion
initiatives at U.S. colleges and universities. The inclusion of social justice as a theme reflects evolving insti-
tutional and student priorities, which may drive or align with this broader trend. This theme encompasses
topics related to justice and activism concerning race, gender, sexuality, ability, immigration, and civil lib-
erties, broadly defined. Rather than taking a normative stance, this analysis seeks to empirically document
how institutions adjust course content in response to changing societal and student demand.

47I chose themes based on three main criteria: 1) their general applicability across multiple fields, 2) the
availability of text data sources that could help identify relevant words/phrases, and 3) their relevance to
intellectual interests students might possess or cultivate during college.
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the New York Times. To capture a token’s relation to research scholarship, I measure its

frequency in abstracts for top academic journals.48 To capture a token’s connection to social

justice, I measure its frequency in a corpus of books and press releases from organizations

oriented towards social justice causes. Finally, to capture a token’s relation to technological

progress, I measure its frequency in patent text. The text data sources used for quantifying

each of these shifts, along with the procedure used to process these data sources, are detailed

in Appendix C.

I construct “relevance weights” for each token w with respect to each theme q.49 The

weights are designed to assess each token’s significance to the reference text relative to a

neutral text source - in this case, the corpus of Wikipedia articles. Each weight is calculated

as the ratio of the token w’s share in documents of type q, to the sum of the token’s shares

both in documents of type q and in Wikipedia articles.50 To demonstrate, consider the

construction of the current events relevance weight of a highly topical token like “climate

change.” Climate change represents 0.002% of tokens in the Wikipedia data and 0.0103% of

tokens in New York Times featured articles. Thus, the current events relevance weight on

“climate change” is:

weightcurrent events
climate change =

0.000103

0.000103 + 0.00002
= 0.837

Table 6 presents relevance weights for a selection of tokens, highlighting two important

48Important work by Biasi and Ma (2022) explores this dimension of course content alignment in much
greater detail, albeit slightly differently from the analysis described in this paper. Their analysis uses repeated
cross sections of course syllabi to characterize differences in exposure to content on the cutting edge of research
across institutions. Their analysis documents differences across universities in the provision of courses on
the research frontier, and shows how instructors contribute to the innovative content of courses when they
observe a change in instructor. My analysis builds on this important work, yet there are key differences
in both the data sources used and our objectives. My dataset contains longitudinal data encompassing the
full set of courses offered by a field. This enables me to observe within-institution and field-specific shifts
over time and in response to changing enrollment. Biasi and Ma’s analysis emphasizes the novelty of course
content, whereas my research measure is related to a course’s general connection with research-themed topics.
My approach considers the relevance of both transitory and enduring research topics, recognizing terms like
“research” or “analysis” that perennially indicate research relevance. While not differentiating between
cutting-edge and older research content, it provides insight into a course’s alignment with research-related
topics over time.

49Alternative strategies for measuring the curriculum alignment of course descriptions include using a
multinomial classifier or a more sophisticated embeddings model. These alternative methods are more
flexible than the method described above. The primary advantage of my expression weighting approach is
its transparency; it is easy to validate the weights assigned to each token and interpret how these weights
contribute to the alignment scores.

50This weight is analogous to the conditional probability from an experiment where a thematic corpus (q
or the corpus of Wikipedia articles) is randomly selected and a token w is subsequently randomly picked
from that category. The relevance weight therefore represents the conditional probability that if a particular
token w was chosen, it originated from the theme q.
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features of the method. The top panel shows relevance weights for five tokens, each aligned

with one of the five themes. Each token has a high relevance weight within its corresponding

theme, demonstrating the method’s ability to identify important terms from the thematic

documents. The bottom panel shows that word pairs with similar meanings or contexts

consistently have comparable relevance weights. This consistency underscores the robustness

of the method, ensuring that subtle shifts in jargon or terminology — common in academic

and professional texts — do not distort alignment scores. By capturing meaningful thematic

alignment while remaining insensitive to superficial linguistic variations, the method provides

a reliable framework for assessing course-to-theme alignments.

To measure the extent to which a course aligns with a given theme, I calculate a “curricu-

lum alignment score” for each course, year, and theme tuple. The curriculum alignment score

is the sum of the relevance weights for tokens in a field’s descriptions, weighted by the TF-

IDF weights. In essence, the score averages the theme-specific importance of words/phrases

in the course descriptions, with greater weight given to words/phrases distinctive to each

document. Appendix C provides a detailed example of how a curriculum alignment score is

calculated.

To validate the method, I plot the average alignment scores for courses offered in 2022-

23, categorized by field and averaged across institutions, in Figure 6.51 The figure confirms

that different fields align with the five themes in intuitive ways. For example, courses in

Economics and Business show stronger alignment with themes related to current events and

job-related skills. In contrast, courses in the Humanities are less vocationally focused but

exhibit a modest alignment with current events. Computer Science courses, meanwhile,

reflect a blend of academic research, vocational skills identified in job descriptions, and

technological advancements found in patents.52

Next, I describe the changes in curriculum alignment over the past 20 years. Figure 7

plots the trend in average curriculum alignment of college courses offered since 2002-03. I

estimate course-level regressions of curriculum alignment scores on a vector of time dummies,

controlling for institution-by-field fixed effects. The estimates are normalized as the change

in curriculum alignment (in standard deviations) relative to the curriculum alignment of the

average course in 2012-13.

Figure 7 demonstrates that college course descriptions have gradually incorporated top-

ics that are related to the themes relevant to students’ interests. For example, the average

51The results are qualitatively similar when analyzing course offerings from other years.
52Appendix Figure A-13 summarizes an additional validation exercise comparing alignment scores to Chat-

GPT’s rankings of course alignment with the themes. ChatGPT and the curriculum alignment scores agree
in approximately 90% of pairwise comparisons when contrasting a course in the lowest quartile of a theme
with one in the top quartile.
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college course became 0.044 sd more social justice-aligned between 2012-13 and 2022-23. For

comparison, the 10-year change in social justice alignment over the period of a decade is ap-

proximately 6.5% of the difference in social justice alignment between the average Sociology

course and the average Business course. Given that I am controlling for institution-by-field

fixed effects, this trend is not driven by shifts in the composition of course offerings across

fields, but represents within-field changes in the topics covered. The greatest growth during

this period is in emphasis on topics related to current events, social justice, and job relevance.

Two factors may be driving the general upward trend in curriculum alignment: courses

may be increasingly incorporating topics related to the identified themes (or removing topics

unrelated to them), as I argue in this section. Alternatively, the trend could be an artifact of

the method itself, if the selection of reference texts systematically favors more recent courses.

To assess this possibility, I conduct a robustness check that calculates alignment scores based

on weights constructed using only the older or more recent halves of the thematic corpora.

Trends are broadly consistent across these constructions, suggesting that the observed shifts

reflect substantive curricular changes rather than methodological bias. A more detailed

discussion of this analysis, including differences in trends across themes and the role of

changes in the composition of news coverage, is provided in Appendix C.

The process by which curricula adapt to align with these themes has significant implica-

tions for how universities disseminate knowledge. If existing courses are continually updated

to reflect new developments, the persistence of course offerings may not constrain students’

access to content that meets their evolving demands. However, if curricular adjustments rely

primarily on introducing new courses and phasing out outdated ones, inelasticity in course

offerings could restrict students’ exposure to the most relevant and timely content.

I next assess the sources of growing curricular alignment for each theme. Following Foster

et al. (2001), I decompose the average change in curriculum alignment into four components.

The “within” component measures changes attributable to changing course content for the

same course offered in both 2012-13 and 2022-23.53 The “between” component measures

changes attributable to enrollment shifts between the continuously offered courses. The

“exit” component measures changes due to the discontinuation of courses offered in 2012-13

but not in 2022-23. And the “entry” component measures changes due to the creation of

53The risk with the “within” component is that courses might undergo changes that are not reflected in
their descriptions. To address this, I evaluate the decomposition over a lengthy period. In cases where I
find updates to descriptions for courses that are still being offered, the new and old descriptions typically
share similar alignment scores. These scores are calibrated to represent the core themes of a course, which
are usually consistent even if the description changes. While minor course adjustments might cause slight
variations in these scores, substantial changes often prompt the creation of a completely new course. Many
institutions have guidelines that limit the scope of course description modifications; beyond a certain point,
a new course is typically introduced.
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courses that are offered in 2022-23 but were not offered in 2012-13. I measure changes within

each institution and field, aggregate these changes at the institution level weighted by each

field’s share of total start-of-period enrollment, and then compute an unweighted average

across institutions.54 I describe the decomposition procedure in greater detail in Appendix

F.

Figure 8 plots the decomposition. The figure demonstrates that the increasing curriculum

alignment of courses in my sample arises primarily due to the entry and exit of courses, rather

than changes within existing courses. For example, 65% of the change in average social justice

alignment between 2012–13 and 2022–23, within institution and field, is attributable to the

entry of new courses that were more social justice–aligned than the average course offered

in 2012–13.

The creation of new courses is an important way for universities to adapt their offer-

ings, particularly for themes like current events and social justice, where new topics emerge

frequently. By introducing new courses, universities can respond to social or technological

developments in real time, in ways that existing courses might not address. Additionally,

many universities restrict how much instructors can modify course descriptions without re-

view from a curriculum oversight board, making course creation a more practical mechanism

for adjustment. Finally, the curriculum alignment score is designed to capture the overar-

ching “gist” of a course, which often remains stable even when some topics or tools change.

For example, a programming course that shifts from Java to Python would not register as a

major thematic change because it remains, fundamentally, a programming course.

Meanwhile, in some of the themes with more modest growth in alignment, such as tech-

nology, the growth is driven primarily by course exit. This represents less of an intentional

effort on the part of the university to incorporate topics than a reflection of the kinds of

courses that are likely to be discontinued during this time. For example, referring to Figure

5, courses in English departments most likely to be discontinued are courses related to poetry

and British literature - courses that are inherently not strongly aligned to technology, even

relative to other English courses. The discontinuation of these courses may be downstream

of students’ preferences for these themes, but does not reflect intentional alignment on the

part of the university in the same way that alignment from course entry does.

The gradual shift in course content toward increased alignment with the five themes

occurs through varied pathways. Course entry and exit play a significant role in driving

these changes, which helps contextualize the earlier finding that the quantity of courses

54Small discrepancies in the net change in curriculum alignment measured in this exercise compared to
Figure 7 reflect mechanical differences in how individual courses are weighted and in how field-by-institution
averages are estimated and controlled for in each approach.
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adjusts far less than one-for-one to shifts in student demand. The evidence presented in this

section suggests that fields with more dynamic course offerings tend to align more closely

with themes that resonate with students.

5.4 Heterogeneity

Figure 9 illustrates differences in the topics emphasized by universities and how these em-

phases have shifted over time. The figure compares average curriculum alignment in courses

offered in 2012-13 and 2022-23, broken down by topic and Carnegie classification. Esti-

mates are presented in standard deviation differences relative to the average course at R1

institutions in 2012-13, based on course-level regressions of alignment scores on Carnegie

classification-by-academic year dummies. Each institution-term is weighted equally, with

courses within each term weighted by enrollment. To isolate differences beyond field com-

position, I control for field fixed effects, ensuring the estimates reflect alignment changes

driven by course content, offerings, and shifts in enrollment patterns. These results capture

the alignment of a typical course a student takes at a given institution during a given term,

highlighting both temporal changes and institutional variation.

The figure suggests three insights. First, it confirms the broader curriculum shifts toward

themes like social justice, job relevance, and current events between 2012-13 and 2022-23,

consistent with the patterns observed in Figure 7. Second, universities differ in the topics to

which students are exposed: at R2 and less research-intensive universities, students enroll

in courses that are more job-related, while students at R1 and liberal arts universities enroll

in more current events-oriented courses, particularly recently. Third, changes in curriculum

alignment differ notably by institution type over time. The changes have been most striking

at R1 and liberal arts institutions, where a combination of changing course offerings and

shifting enrollment has led to markedly greater exposure to current events and social justice.

Changes have been comparatively smaller at teaching-focused and R2 institutions.

Appendix Figures A-15 and A-16 repeat the exercise, splitting the analysis by institution

size and control. Among institutions of different sizes, the most striking pattern is the gap

between the largest universities and all others: large universities today offer courses that are

most similar to those offered a decade ago, while small and medium-sized institutions have

seen more pronounced shifts—particularly in alignment with social justice, current events,

and job relevance. Comparing public and private institutions, private universities in both

2012–13 and 2022–23 offered courses that were more aligned with job relevance and less

aligned with current events than their public counterparts. Additionally, increase in social

justice alignment over time was much more pronounced at private universities than at public

ones.
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Course supply and demand interact in important ways to generate the results in this

figure. On the supply side, universities have expanded course offerings in social justice and

job-relevant skills. On the demand side, students are increasingly sorting into these courses.

I leave for future work whether supply or demand leads these changes, or whether they are

jointly pushed by outside forces. However, differences in both the level and rate of change

in curriculum alignment provide insight into the skills and topics a university prioritizes in

its course offerings, and its capacity to make changes to its offerings over time.

6 Conclusion

This paper examines course supply changes with respect to changing student demand within

American universities over more than two decades. I use a unique dataset that I constructed

by scraping online course catalogs to measure how course supply adjusts to changing demand

along both extensive and intensive margins.

During a period when students’ demand for different fields of study changed dramat-

ically, universities responded less than one-for-one in adjusting the quantity of courses to

meet changing demand. I estimate that a 10% change in demand for a field results in a 2.1%

change in courses offered and a 5.3% change in course sections. Notably, course quantity is

more elastic when enrollment in a field is growing relative to when enrollment is shrinking.

Course supply is also highly persistent: 65% of courses offered in 2022-23 have been offered

for at least a decade, and changes to course descriptions are modest after a course is intro-

duced. Thus, the primary channel for universities to innovate and align with student demand

is through introducing new courses. Course content gradually adopts topics relevant to stu-

dents’ interests, including courses related to social justice and job-relevant skills, through

the introduction of new courses. In heterogeneity analysis, I show that R1 universities are

more responsive to changing enrollment - particularly for fields with growing enrollment -

and that their students enroll in courses that emphasize current events and social justice,

whereas students at universities with less of a research emphasis enroll in a more vocational

curriculum.

The analysis in this paper is purely positive, but it is possible to point to trade-offs

involved in offering a more or less adaptive curriculum. Inelasticity harms students when they

cannot secure seats in their preferred courses or when the course content hasn’t been updated

to reflect relevant topics and skills. Other students benefit from inelasticity, particularly

those who get to enroll in smaller courses because of the university’s continued support

of less popular fields. Similarly, faculty bear a cost when creating new courses, so some

inelasticity in course supply offers assurance that the upfront investment required to create
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a course can be recouped over time.

The extent to which the course quantity elasticities I estimate deviate from the socially

optimal course quantity elasticity depends on the appropriate balance between the welfare

gains and costs from course quantity modifications. The optimal course quantity elasticity

is likely greater than 0, such that students can develop human capital necessary to succeed

in an evolving economic, social, and technological landscape. However, it is almost certainly

less than 1 due to inelasticities in instructor supply. Moreover, the university must balance

the welfare of current and future students in a way that may dampen responses to short-run

student demand shocks. The socially optimal elasticity depends crucially on social weights

placed on the various objectives a university satisfies, and may differ across universities.

While the optimal elasticity of course supply is difficult to pin down, Appendix E illus-

trates some of the consequences of inelasticity: back-of-the-envelope estimates suggest that

rationing in high-demand fields may have reduced major completions in Computer Science

and Engineering by approximately 2–3%, and that students whose demand is accommodated

take courses and sections with roughly 40% more students than a decade ago.

The findings in this paper highlight a potential misalignment between how students and

policymakers perceive universities’ responsiveness to labor market conditions and how univer-

sities actually adjust. From a policy perspective, the asymmetries in course supply elasticity

have implications for addressing skill gaps in the labor market. Policymakers aiming to en-

hance workforce alignment may benefit from supporting institutional flexibility in curriculum

adjustments, particularly in fields experiencing rapid growth. Additionally, these findings

highlight the need to consider institutional constraints when designing interventions, such as

funding incentives, that aim to influence educational supply. For university administrators,

understanding the elasticity of course supply to enrollment changes can guide strategic de-

cisions on resource allocation, faculty hiring, and curriculum design. By closely monitoring

shifts in demand, institutions can better serve their students — whether by accommodating

demand or steering students away from perceived fads — while maintaining relevance and

competitiveness in a dynamic educational environment.

A logical extension of this research would be to link inelasticity in higher education

with students’ labor market outcomes. By linking inelasticity in course supply to students’

outcomes, we can gauge if inelasticity adversely impacts students. Additionally, as the

landscape of higher education shifts with the emergence of disruptors in higher education —

like private for-profit universities and bootcamp programs — that compete with traditional

four-year institutions by offering a more focused and adaptable curriculum, this paper’s

insights can guide universities’ adjustments to an evolving higher education landscape.

33



Works cited

Acton, Riley K (2021). “Community college program choices in the wake of local job losses”.
In: Journal of Labor Economics 39.4, pp. 1129–1154.

Ahn, Thomas et al. (2019). Equilibrium grade inflation with implications for female interest
in stem majors. Tech. rep. National Bureau of Economic Research.

Altonji, Joseph G, Peter Arcidiacono, and Arnaud Maurel (2016). “The analysis of field
choice in college and graduate school: Determinants and wage effects”. In: Handbook of
the Economics of Education. Vol. 5. Elsevier, pp. 305–396.

Andrews, Michael and Yiling Zhao (2024). “Home Economics and Women’s Gateway to
Science”. In: Available at SSRN 4708155.

Autor, David H, Frank Levy, and Richard J Murnane (2003). “The skill content of recent
technological change: An empirical exploration”. In: The Quarterly journal of economics
118.4, pp. 1279–1333.

Bald, Anthony (2025). The Birth of an Occupation: Professional Nursing in the Era of Public
Health. Tech. rep. Center for Open Science.

Bandiera, Oriana, Valentino Larcinese, and Imran Rasul (2010). “Heterogeneous class size
effects: New evidence from a panel of university students”. In: The Economic Journal
120.549, pp. 1365–1398.

Bedard, Kelly and Peter Kuhn (2008). “Where class size really matters: Class size and student
ratings of instructor effectiveness”. In: Economics of Education Review 27.3, pp. 253–265.

Beffy, Magali, Denis Fougere, and Arnaud Maurel (2012). “Choosing the field of study in
postsecondary education: Do expected earnings matter?” In: Review of Economics and
Statistics 94.1, pp. 334–347.

Biasi, Barbara and Song Ma (2022). The education-innovation gap. Tech. rep. National Bu-
reau of Economic Research.

Bleemer, Zachary and Aashish Mehta (2021). “College Major Restrictions and Student Strat-
ification. Research & Occasional Paper Series: CSHE. 14.2021.” In: Center for Studies in
Higher Education.

— (2022). “Will studying economics make you rich? A regression discontinuity analysis of
the returns to college major”. In: American Economic Journal: Applied Economics 14.2,
pp. 1–22.

Blom, Erica, Brian C Cadena, and Benjamin J Keys (2021). “Investment over the business
cycle: Insights from college major choice”. In: Journal of Labor Economics 39.4, pp. 1043–
1082.

Borusyak, Kirill, Peter Hull, and Xavier Jaravel (2022). “Quasi-experimental shift-share
research designs”. In: The Review of Economic Studies 89.1, pp. 181–213.

Chau, Hung et al. (2023). “Connecting higher education to workplace activities and earn-
ings”. In: Plos one 18.3, e0282323.

Conzelmann, Johnathan G et al. (2022). Grads on the go: Measuring college-specific labor
markets for graduates. Tech. rep. National Bureau of Economic Research.

— (2023). Skills, Majors, and Jobs: Does Higher Education Respond? Tech. rep. National
Bureau of Economic Research.

Courant, Paul N and Sarah Turner (2017). Faculty deployment in research universities. Tech.
rep. National Bureau of Economic Research.

34



Deming, David J, Claudia Goldin, and Lawrence F Katz (2012). “The for-profit postsec-
ondary school sector: Nimble critters or agile predators?” In: Journal of Economic Per-
spectives 26.1, pp. 139–164.

Deming, David J and Kadeem Noray (2020). “Earnings dynamics, changing job skills, and
STEM careers”. In: The Quarterly Journal of Economics 135.4, pp. 1965–2005.

Denning, Jeffrey T et al. (2022). “Why have college completion rates increased?” In: Amer-
ican Economic Journal: Applied Economics 14.3, pp. 1–29.

Eggenberger, Christian, Miriam Rinawi, and Uschi Backes-Gellner (2018). “Occupational
specificity: A new measurement based on training curricula and its effect on labor market
outcomes”. In: Labour Economics 51, pp. 97–107.

Foster, Lucia, John C Haltiwanger, and Cornell John Krizan (2001). “Aggregate productivity
growth: lessons from microeconomic evidence”. In: New developments in productivity
analysis. University of Chicago Press, pp. 303–372.

Freeman, Richard B (1976). “A cobweb model of the supply and starting salary of new
engineers”. In: ILR Review 29.2, pp. 236–248.

Gentzkow, Matthew, Bryan Kelly, and Matt Taddy (2019). “Text as data”. In: Journal of
Economic Literature 57.3, pp. 535–574.

Gilpin, Gregory A, Joseph Saunders, and Christiana Stoddard (2015). “Why has for-profit
colleges’ share of higher education expanded so rapidly? Estimating the responsiveness
to labor market changes”. In: Economics of Education Review 45, pp. 53–63.

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift (2020). “Bartik instruments: What,
when, why, and how”. In: American Economic Review 110.8, pp. 2586–2624.

Hemelt, Steven W et al. (2021). “Why is math cheaper than English? Understanding cost
differences in higher education”. In: Journal of Labor Economics 39.2, pp. 397–435.

Kokkelenberg, Edward C, Michael Dillon, and Sean M Christy (2008). “The effects of class
size on student grades at a public university”. In: Economics of Education review 27.2,
pp. 221–233.

Kraft, Matthew A et al. (2020). “Teacher accountability reforms and the supply and quality
of new teachers”. In: Journal of Public Economics 188, p. 104212.

Long, Mark C, Dan Goldhaber, and Nick Huntington-Klein (2015). “Do completed college
majors respond to changes in wages?” In: Economics of Education Review 49, pp. 1–14.

MacLeod, W Bentley and Miguel Urquiola (2021). “Why does the United States have the
best research universities? Incentives, resources, and virtuous circles”. In: Journal of
Economic Perspectives 35.1, pp. 185–206.

Monks, James and Robert M Schmidt (2011). “The impact of class size on outcomes in
higher education”. In: The BE Journal of Economic Analysis & Policy 11.1.

Mumford, Kevin J, Richard Patterson, and Anthony Yim (2024). College Course Shutouts.
Tech. rep. IZA Discussion Papers.

Patnaik, Arpita, Matthew Wiswall, and Basit Zafar (2021). “College majors 1”. In: The
Routledge handbook of the economics of education, pp. 415–457.

Ruggles, Steven et al. (2023). “IPUMS USA: Version 13.0 [dataset].” In: url: https://doi.
org/10.18128/D010.V13.0.

Thomas, James (2024). “What do course offerings imply about university preferences?” In:
Journal of Labor Economics 42.1, pp. 53–83.

35

https://doi.org/10.18128/D010.V13.0
https://doi.org/10.18128/D010.V13.0


Truffa, Francesca and Ashley Wong (2024). “Undergraduate Gender Diversity and the Di-
rection of Scientific Research”. In.

Weinstein, Russell (2020). “Local labor markets and human capital investments”. In: Journal
of Human Resources, 1119–10566R2.

Wiswall, Matthew and Basit Zafar (2015). “Determinants of college major choice: Identi-
fication using an information experiment”. In: The Review of Economic Studies 82.2,
pp. 791–824.

36



Figure 1. Sample entry in the course catalog dataset

Source: Stanford University.
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Table 1. Characteristics of course catalog sample

4 year institutions

Population Catalog Sample Enrollment Sample

mean sd mean sd mean sd

Enrollment 4,912 20,330 9,493 20,545 9,373 22,062
Public share 72.48 44.66 80.47 39.64 80.53 39.60
Average tuition 16,774 15,370 166 14,711 163 14,930
Average price 16,786 8,455 17,038 7,652 17,166 7,523
Admit rate 71.99 22.54 70.41 23.82 71.78 23.68
Tenure share 51.45 19.29 54.44 13.96 54.38 15.24
Student-faculty ratio 17.43 5.40 17.53 4.48 17.30 4.21
6-year graduation rate 59.54 19.62 63.35 18.57 61.95 19.03
Endowment per student 58,785 215,681 75,035 261,899 68,148 258,975
Tuition % of revenue 34.12 19.83 31.92 17.15 32.26 17.20
Research % of spending 8.77 11.96 11.56 13.50 11.58 14.09
N 1,972 529 375

2 year institutions

Population Catalog Sample Enrollment Sample

mean sd mean sd mean sd

Enrollment 5,194 16,543 6,376 14,178 5,551 8,858
Public share 99.34 8.11 100 0.00 100 0.00
Average tuition 3,495 1,978 3,468 1,468 3,350 1,462
Average price 7,973 3,079 7,669 2,479 7,674 2,721
Student-faculty ratio 19.29 5.38 19.09 4.57 18.70 4.36
N 933 254 206

Notes: Institution characteristics from IPEDS for the 2021-22 academic year. Only non-profit, Title
IV-eligible, degree-granting institutions are included. Values except for undergraduate enrollment are
weighted by enrollment. Averages exclude missing values. The ‘Catalog Sample’ includes all institutions
in the sample. The ‘Enrollment Sample’ includes those with course-level enrollment data.
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Figure 2. Trends in course enrollment and quantity: comparison to 2010-11

Notes: This figure plots the relative growth trends in course enrollment, course quantity, and section quantity

across six aggregated field categories. Enrollment and course quantity for each institution and field category

are indexed to their respective levels in the academic year 2010-11. The plotted points represent the average

of these indexed values, averaged across all institutions in the sample. The figure restricts to upper-level

courses offered at institutions with that first appear in the catalog data in 2010-11 or earlier.
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Table 2. Course quantity elasticity estimates

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change - overall 0.190 0.243 0.272 0.297 0.328 0.352 0.299 0.299
(0.027) (0.026) (0.023) (0.033) (0.026) (0.033) (0.060) (0.046)

% enrollment change - field 0.206 0.202 0.314 0.328 0.398 0.410 0.396 0.206
(0.010) (0.011) (0.010) (0.014) (0.011) (0.016) (0.025) (0.055)

First Stage F-stat 124.6

Observations 90,618 40,511 75,553 18,228 48,762 11,662 3,911 3,911
R2 0.067 0.068 0.177 0.180 0.313 0.314 0.305 0.245

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The analysis
regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are credit-hour
weighted. Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2 estimate elasticities
using two-year differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using eight-year differences. Columns
1, 3, and 5 use overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single period. In Columns 1-7, standard errors
are clustered at the institution-by-period level; in Column 8, standard errors are clustered at the institution and field-by-Census division level, which is the
level of variation for the instrument. Significance stars are suppressed, as the natural comparison is not obviously 0.
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Table 3. Section quantity elasticity estimates

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change - overall 0.389 0.431 0.554 0.589 0.648 0.678 0.640 0.640
(0.040) (0.043) (0.027) (0.041) (0.026) (0.031) (0.050) (0.030)

% enrollment change - field 0.310 0.310 0.485 0.511 0.594 0.612 0.608 0.533
(0.011) (0.013) (0.011) (0.015) (0.010) (0.016) (0.025) (0.037)

First Stage F-stat 124.6

Observations 90,618 40,511 75,553 18,228 48,762 11,662 3,911 3,911
R2 0.138 0.136 0.346 0.354 0.545 0.542 0.563 0.557

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The analysis
regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are credit-hour
weighted. Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2 estimate elasticities
using two-year differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using eight-year differences. Columns
1, 3, and 5 use overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single period. In Columns 1-7, standard errors
are clustered at the institution-by-period level; in Column 8, standard errors are clustered at the institution and field-by-Census division level, which is the
level of variation for the instrument. Significance stars are suppressed, as the natural comparison is not obviously 0.
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Table 4. Asymmetric course quantity elasticity estimates

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change - overall 0.190 0.247 0.274 0.302 0.333 0.363 0.310 0.304
(0.027) (0.027) (0.024) (0.035) (0.028) (0.034) (0.065) (0.047)

% enrollment change - growing 0.205 0.219 0.321 0.342 0.418 0.447 0.456 0.345
(0.010) (0.013) (0.011) (0.018) (0.014) (0.019) (0.030) (0.059)

% enrollment change - shrinking 0.207 0.189 0.309 0.317 0.382 0.381 0.344 0.078
(0.016) (0.014) (0.016) (0.018) (0.017) (0.024) (0.035) (0.088)

First stage F-stat 69.9

p-value grow = shrink 0.935 0.083 0.522 0.279 0.099 0.025 0.009 0.012

Observations 90,618 40,511 75,553 18,228 48,762 11,662 3,911 3,911
R2 0.067 0.068 0.177 0.180 0.313 0.315 0.310 0.061

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The analysis
regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are credit-hour weighted.
Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2 estimate elasticities using two-year
differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using eight-year differences. Columns 1, 3, and 5 use
overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single period. In Columns 1-7, standard errors are clustered
at the institution-by-period level; in Column 8, bootstrapped standard errors are calculated using 1, 000 repetitions of the estimation, resampling region-by-field
clusters in each iteration. Significance stars are suppressed, as the natural comparison is not obviously 0.
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Table 5. Asymmetric section quantity elasticity estimates

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change - overall 0.388 0.436 0.556 0.592 0.653 0.685 0.646 0.641
(0.041) (0.044) (0.028) (0.043) (0.028) (0.031) (0.053) (0.030)

% enrollment change - growing 0.308 0.333 0.492 0.518 0.613 0.637 0.642 0.564
(0.013) (0.016) (0.013) (0.021) (0.014) (0.018) (0.029) (0.059)

% enrollment change - shrinking 0.310 0.292 0.479 0.505 0.580 0.592 0.578 0.504
(0.017) (0.017) (0.015) (0.020) (0.015) (0.023) (0.036) (0.061)

First stage F-stat 69.9

p-value grow = shrink 0.929 0.055 0.479 0.638 0.126 0.123 0.133 0.48

Observations 90,618 40,511 75,553 18,228 48,762 11,662 3,911 3,911
R2 0.138 0.136 0.346 0.354 0.545 0.543 0.564 0.186

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The analysis
regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are credit-hour weighted.
Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2 estimate elasticities using two-year
differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using eight-year differences. Columns 1, 3, and 5 use
overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single period. In Columns 1-7, standard errors are clustered
at the institution-by-period level; in Column 8, bootstrapped standard errors are calculated using 1, 000 repetitions of the estimation, resampling region-by-field
clusters in each iteration. Significance stars are suppressed, as the natural comparison is not obviously 0.
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Figure 3. Heterogeneity in course and section quantity elasticity by Carnegie group

Courses

Sections

Notes: This figure compares the course quantity elasticities at different types of institutions.

The figure plots estimates of the interaction term(s) between relative changes in enrollment

and the institution’s Carnegie classification, where R1 universities are the omitted institution

category. The regression estimates eight-year course and section quantity elasticities with

a one-year offset. Observations each the regression are at the institution-field-term level.

Standard errors are clustered at the institution-term level.
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Figure 4. Prominent words/phrases in selected fields (2022-23)

Notes: This figure showcases the top 25 tokens (words or phrases) for selected fields based on their

average TF-IDF weight. For each field, courses from 2022-23 are aggregated into an institution-

field document. The TF-IDF weight for each token is computed per document and then averaged

within its field. Tokens containing the field’s full name or common abbreviation (e.g., “Econ” for

Economics) are excluded.
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Figure 5. Evolution of token significance in discontinued vs introduced courses

Notes: This figure contrasts the distinctive words of courses from 2012-13 to those of 2022-23. “Discontinued”

courses are those offered in 2012-13 but no longer offered by 2022-23. “Introduced” courses are those

not offered before 2012-13 but offered in 2022-23. Descriptions are grouped by field and course category

(discontinued vs introduced). The visualization presents the top 15 tokens with the highest TF-IDF values

from both course groups. Tokens with the field’s full name or common abbreviation (e.g., “Econ” for

Economics) are excluded.
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Table 6. Relevance weights for sample tokens

Token Current events Job relevance Scholarship Social justice Technology

Distinctive tokens financial crisis 0.88 0.03 0.45 0.41 0.01
customer service 0.69 0.99 0.26 0.51 0.68
regression 0.10 0.92 0.99 0.70 0.84
injustice 0.67 0.06 0.29 0.93 0.00
invention 0.38 0.17 0.03 0.48 0.99

Pairs of similar words king 0.30 0.03 0.00 0.09 0.01
queen 0.63 0.05 0.00 0.06 0.01

dog 0.61 0.08 0.03 0.13 0.19
cat 0.49 0.14 0.07 0.07 0.24

blackberry 0.83 0.68 0.00 0.40 0.53
iphone 0.90 0.69 0.00 0.77 0.50

global warming 0.93 0.07 0.86 0.38 0.71
climate change 0.84 0.17 0.83 0.36 0.14

Notes: This table presents relevance weights of selected tokens. These weights measure a token’s significance in a document related to a specific
theme (e.g., a job description for job relevance) relative to its significance in a neutral text reference, such as the entirety of Wikipedia. Weights
range from 0 to 1, with higher values indicating greater frequency in the thematic document compared to Wikipedia.
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Figure 6. Average curriculum alignment across sampled fields (2022-23)

Notes: This figure plots the average curriculum alignment scores in a sample of popular fields for courses

offered in 2022-23. Each course description is scored for its alignment to each of five distinct themes: current

events, job relevance, scholarship, social justice, and technology. The bars plot the mean alignment within

each field and theme, aggregated across institutions. Analysis restricts to upper-level courses. Fields are

sorted in descending order according to their alignment with current events.
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Figure 7. Change in curriculum alignment: 2002-03 to 2022-03

Notes: This figure plots the trend in curriculum alignment scores for courses offered from 2002-03 to 2022-23.

The trend is estimated in course-level regressions of a course’s curriculum alignment score for a given theme

on a vector of year dummies, controlling for institution-by-field fixed effects. Changes are measured relative

to the average curriculum alignment score in 2012-13 and reported in standard deviations. Analysis restricts

to upper-level courses. Standard errors are clustered at the institution-field level.
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Figure 8. Decomposition of curriculum alignment changes: 2012-13 to 2022-23

Notes: This figure decomposes down the shift in curriculum alignment between 2012-13 and 2022-23. Utiliz-

ing an approach based on Foster et al. (2001), the evolution in curriculum alignment at the institution-by-field

level is decomposed into four components: updates within continuously-offered courses, changes due to shifts

in enrollment across courses continuously offered by a field, discontinuations of courses, and introductions of

new courses. Each institution receives equal weight; within each institution, fields are weighted by enrollment

in 2012-13.
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Figure 9. Heterogeneity in course content by Carnegie group: 2012-13 to 2022-23

Notes: This figure compares the topics emphasized in college courses at different types of institu-

tions across different points in time. The estimates come from separate course-level regression of

curriculum alignment score on Carnegie classification-by-academic year dummies. Estimates are

transformed into standard deviation changes relative to R1 universities in 2012-13. For the regres-

sion, all institution-terms receive equal weight; within the institution-term, courses are weighted

by enrollment. Thus, the estimates speak to variation in the topical exposure of the courses a

typical student takes at different kinds of institutions and at different points in time. The regres-

sion restricts to a panel of institutions with course description and enrollment data in 2012-13

and 2022-23.
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Appendix

A Dataset construction

I assembled a sample of schools for inclusion in the course catalog by using two strategies.

Initially, I selected schools from the IPEDS directory to scrape their course catalogs. A

manual search was conducted on over 1,000 institutions. For institutions with online course

catalogs that were available in a format that could be scraped and had at least a few years

of archived data, I scraped the course descriptions for all courses offered in all available

years. Subsequently, I searched for institutions that used the most common course schedule

templates to scrape course enrollment data, prioritizing those with at least five years of

schedule data available.

The current sample comprises data from 783 institutions, including 529 4-year schools

and 254 2-year schools. The 4-year schools make up 26% of schools and enroll 52% of the

students at all 4-year non-profit, bachelor’s degree-granting Title IV-eligible institutions. The

2-year schools make up 27% of schools and enroll 33% of the students at 2-year non-profit,

degree-granting Title IV-eligible institutions. Figure A-1 plots a map of the institutions

included in the sample. The focus of this paper is on course supply in the sample of 4-year

institutions.

The data date back to 1998, with the most dense coverage in the last decade. Figure A-2

plots the number of institutions for which course descriptions or course enrollment data are

observed annually. Data availability grows over time. 311 of institutions in my sample have

data first available in 2010 or earlier, and 470 have data first available in 2015 or earlier.

Data collection began in February 2020 and is ongoing. For real-time data collection, I

scrape course offerings and enrollment data mid-semester, after each school’s add-drop dead-

line, when course offerings and section enrollment have stabilized. Scraping mid-semester

ensures that I capture data for schools that remove their course schedules later in the term

to replace them with the next semester’s schedule. Additionally, for many universities in

my sample, I am able to access archived course data from periods before the school entered

my sample. In these cases, enrollment and course offerings reflect end-of-semester values.

Comparisons between mid-semester and end-of-semester data reveal that course quantities

and total enrollment are nearly always identical.

To validate the course catalog data, I compare it with publicly available aggregated

enrollment statistics from IPEDS, which reports the total number of undergraduate credit

hours completed at each institution. I construct a comparable measure from the course

catalog data by aggregating course-level enrollment. Figure A-3 compares enrollment growth

52



trends across the two sources. For each institution-term, I index total undergraduate credits

in both datasets relative to their 2018–19 levels and plot the resulting values.1

The figure demonstrates a strong correlation between undergraduate enrollment hours

aggregated using my data and the reference data collected by IPEDS. In the figure, alignment

along the 45◦ line indicates that both datasets reflect similar rates of enrollment growth. The

strong correlation between the two series (correlation coefficient = 0.91) confirms that the

catalog data reliably replicate benchmark trends in the aggregate.

Substantial processing was required to convert the scraped course catalog and schedule

data into a dataset suitable for analysis. The processing of course enrollment data is outlined

in this section, while the processing of course description data is detailed in Appendix Section

C.

In the analysis estimating course quantity elasticity, I limit the data to the main terms

offered by each institution, which typically include a Fall and Spring semester or Fall, Win-

ter, and Spring quarters. Independent study, internship, supervised research, thesis, study

abroad, student teaching, private lessons, teaching assistantship courses are excluded due to

their asynchronous nature. Often, “honors” sections of a course are assigned different course

numbers (e.g., Econ 101 vs Econ 101H). I treat these instances as multiple sections of the

same course. Additionally, I exclude sections with fewer than 5 students enrolled due to

uncertainty about whether the course actually ran.2

Course levels (pre-undergraduate, lower, upper, graduate) are assigned according to the

institution’s numbering convention. Occasionally, the course schedule distinguishes between

lower/upper/graduate courses, and in these cases, I defer to the course-specific designation.

Cross-listing occurs when a single class is listed under multiple fields or levels, but such

instances are not always explicitly identified in the course schedule. To address this, I infer

cross-listings using details from the course catalog data. Courses are classified as cross-listed

if they share the same instructor, meeting days, times, location, course title, and section

number. Each associated field and level (e.g., upper-level Economics) is credited with a

portion of the cross-listed course. For example, if a course is listed as both Econ 101 and

Business 101 with identical cross-listing identifiers, I split quantity “credit” for this course

1Validating indexed values, rather than levels, serves two purposes. First, many schools assign course
credits (e.g., 1 credit for a full course, 0.25 credits for a mini-course) differently from the instructional
hours reported to IPEDS. Normalizing by instructional hours in a base year standardizes these institutional
differences. Second, discrepancies between the catalog and IPEDS data may arise for several reasons—for
example, from courses that offer a range of credit hours, from mismatches between course numbering and
degree level, or from reporting errors in either source. When large discrepancies occur, I conduct institution-
by-term quality checks and exclude a small number of schools with clearly anomalous data.

2The overwhelming majority of the sections dropped are for courses in the Humanities and Arts; to the
extent that I am erroneously dropping some small courses that actually ran, I am if anything understating
course quantity inelasticity by removing these small sections.
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between Economics and Business based on enrollment. When enrollment totals are reported

separately for Econ 101 and Business 101, I distributed credit in proportion to the number

of students enrolled in each section. When only a single enrollment total is reported for the

joint Econ/Business 101, I apportion both enrollment and course credit based on the relative

enrollment in other courses within the same field-level cell.3

B Fields of study

I manually classify the names of 28,000 departments into 54 unique fields for the analysis. A

given field may be described in a number of ways depending on the institution. For example,

Math may be called “Math,” “Mathematics,” “College Math,” etc. I manually classify each

department name into one of 170 sub-fields (largely at the level of a 4-digit CIP code), which

I then assign to one of 54 fields. The unit of analysis in this paper is typically a field,

although some analyses summarized at a more aggregate field category level. Table A-1 lists

the sub-field to field mapping in my analysis.

For most of my analysis, I exclude fields that do not represent departments in the con-

ventional sense and fields associated with professional degrees or skilled trades. A number of

courses are offered by administrative units (e.g. “College of Humanities” or “Office of Aca-

demic Affairs”) that do not correspond to a single field of study, are often difficult to classify,

and likely are not offered through the same decision-making process as courses offered within

a conventional department. I exclude such courses from all parts of the analysis.

I exclude courses associated with professional degrees, including those in Medicine, Law,

Nursing, Pharmacy, and Architecture. While Medicine and Law courses are rarely offered at

the undergraduate level, their course numbering often does not explicitly indicate graduate-

level status, so I exclude all courses in departments classified as Medicine or Law. The

exclusion of Nursing, Pharmacy, and Architecture courses is motivated by their limited

responsiveness to labor market changes. These programs are often siloed within universities,

making it structurally challenging for students to enter or leave these fields in response to

shifting demand. Additionally, the regulated nature of careers in these fields means that

taking a few courses is unlikely to open job opportunities, unlike fields such as Computer

Science or Business. As such, the assumptions underlying my instrumental variables strategy

do not hold for these professional programs, and I exclude them from my analysis. Finally,

I exclude skilled trade programs, such as Beautician or Mechanic programs. Enrollment in

3For example, if Econ 101 and Business 101 are lower-level courses and 100 students are enrolled in other
lower-level Economics courses while 50 students are enrolled in other lower-level Business courses, I allocate
2/3 of the enrollment and course credit for Econ/Business 101 to the Economics department and 1/3 to the
Business department.
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these fields is minimal at the baccalaureate level, and there are often too few observations

in the ACS to construct a reliable instrument for employment growth in occupations tied to

these majors.

C Text data processing

Supplemental text data description

In addition to text data from course descriptions scraped from college and university course

catalogs, I use text data from five different types of sources to study how course content

aligns with various applications of students’ learning. I measure alignment with current

events using data from front page articles published in the New York Times, academic

advancement using data from abstracts for academic journals, technological progress using

text from patent applications, skill demand using text from job descriptions, and social

justice from a combination of books related to activism and online materials published by

organizations oriented towards social justice and civil liberties. I also use text data from the

complete set of Wikipedia articles as a neutral corpus as a benchmark for the distribution

of words against which I can identify words that are highly distinctive of each application

of student learning. I describe each of these data sources in greater detail in the sections

below.

C.0.1 New York Times articles

I download the complete set of articles published by the New York Times (either in print

or digitally) between 2010-2019 using the New York Times Developer API. For each article,

I observe the headline and either an abstract for the article or a text snippet that contains

the first few paragraphs of the article. I define a document by concatenating an article’s

headline and the snippet or abstract (depending on which is provided). The New York

Times data contain 938 thousand articles, and articles on average contain 29 words. I make

no restrictions on the section of the New York Times in which an article is posted, nor do I

make restrictions on whether the article was published in print or online.

C.0.2 Academic journals abstracts

I construct a corpus of abstracts from academic articles downloaded from Elsevier’s SCOPUS.

Following Biasi and Ma (2022), I search for abstracts from academic journals that rank in the

top 10 by H-index for each field during the period 2010-2019. When available, I download

the abstracts of all articles published during this period for each journal. The resulting
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sample includes 155 thousand abstracts from 180 journals. The average document in this

corpus contains 163 words.

The distribution of tokens in academic journals will in part reflect differences across fields

in the use of academic journals for publishing research. Specifically, journals in the sciences

publish more editions and more articles per edition than journals in the humanities and

arts. Thus, when I construct word weights using these documents, the weights will be biased

towards science-oriented words and phrases simply due to the composition of this corpus.

For my analysis, I typically make comparisons within an institution-field pair over time or

control for field fixed effects, which will absorb some bias inherent in the construction of the

corpus.

C.0.3 Patents

I download patent text from the US Patent and Trademark Office covering the period 2010-

2018. The resulting corpus includes the text of 2.5 million patents, which contain on average

250 tokens per document.

C.0.4 Job descriptions

Job description data come from a dataset collected by Lightcast (previously Burning Glass

Technologies) that contains the near-universe of online job posts. The full set of job descrip-

tions is quite massive, so I build the corpus of job descriptions using job descriptions from a

sample of months during my period of analysis. In particular, I include all job descriptions

from March and August 2010, 2012, 2014, 2016, and 2018. I restrict to job descriptions with

a requirement that applicants have at least a college degree. The resulting corpus contains

2 million documents, which contain on average 162 words per document.

C.0.5 Writings related to social justice

This corpus features the text from the ‘Issues” and “Policy Positions” pages from the web-

sites of multiple organizations spanning topics in social justice: the ACLU, the American

Association of Disabled People, Amnesty International, the Brennan Center, the Demo-

cratic Socialists of America, GLSEN, the NAACP, the National Organization of Woemn,

Oxfam, Planned Parenthood, the Southern Poverty Law Center, the Sunrise Movement,

and UNICEF. The corpus also includes the full texts of six prominent books that are listed

among the top 25 activist-related books on Goodreads. Collectively, these sources provide

insights into a spectrum of topics, from racial justice, prison abolition, and women’s rights

to climate change and a more general exploration of civil liberties.
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C.0.6 Wikipedia articles

I downloaded the text of all English-language pages published on Wikipedia as of July 1, 2023

using the “Wikimedia dump service.” The dataset contains the full text of all Wikipedia

pages. I restrict to articles (e.g. filter out redirect pages and media). I process the raw article

entries to exclude lists of references, links, metadata not included in the article, and section

headers. The resulting corpus contains 3.8 million documents, which contain on average 183

words per document.

Text processing

I apply consistent pre-processing procedures to all the text corpora, including the course

descriptions. These procedures involve removing all punctuation and numbers, converting

all strings to lowercase, eliminating URLs, removing stopwords, and lemmatizing the text

(i.e., transforming “regressions” to “regression”).

However, my approach incorporates two non-standard pre-processing steps. First, I ex-

clude “boilerplate” language from the text data. I am concerned about capturing phrases

that are overly common in a specific text but lack relevance to the essence of the content.

For instance, many job descriptions include nearly identical non-discrimination clauses at

the end. Including these texts in my analysis could mistakenly suggest that phrases like

“gender,” “sexual orientation,” and “discrimination” are highly important tokens for job

skill demand, even though their usage in job descriptions is unrelated to the skills demanded

of the jobs. To handle boilerplate language, I exclude sentences that are identically repeated

across numerous documents within a given corpus from my analysis. Specifically, if a par-

ticular sentence appears identically more than 10 times across all documents in a specific

tranche of documents, it is removed during pre-processing.

Second, I create a dictionary with tokens of varying word length based on the co-

occurrence of words in the Wikipedia corpus. The objective here is to distinguish common

n-grams (e.g., “machine learning” or “regression analysis”) from their component words.

This procedure essentially allows for all possible n-grams but removes sparse tokens and

n-grams that frequently co-occur due to being composed of common words, rather than rep-

resenting a distinct concept. Specifically, I combine any two-word pair into a single token if

the two words appear consecutively at least 500 times and if the co-occurrence of the two-

word pair occurs for at least 4% of all instances of the less frequent word in the pair. For

example, in the Wikipedia corpus, the word “machine” appears 59,799 times, and the word

“learning” appears 37,991 times. The words “machine” and “learning” appear consecutively

1,583 times (4.1% of the time “learning” appears in the Wikipedia corpus). Consequently, I
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consider “machine learning” a token distinct from “machine” and “learning.”

This approach allows for tokens of varying word lengths. For example, if the words

“university” and ”michigan” co-occur frequently enough (“of” is removed as a stopword),

and the words “michigan” and “wolverine” co-occur with sufficient frequency, the phrase

“university [of] michigan wolverine” would be included in the dictionary.4

Finally, to reduce the size of the dictionary and minimize the impact of words that are

distinctive due to misspellings or unique to specific types of documents, I project all corpora

onto a dictionary of tokens that appear at least 500 times in the complete Wikipedia text.

As a result, the focus is on commonly recognized words rather than theme-specific jargon,

which aids in drawing meaningful comparisons between different text data sources.5

Enrollment and course description data often come from different sources. In some in-

stances, overlap between the enrollment data and the course description data is imperfect.

For example, it is somewhat common for a new course to not have a course description in the

course catalog during the first year it is offered. In instances where a course is continuously

offered (enrollment is nonzero) but the course description appears inconsistently in the course

catalog, I backfill from next term a course description is available. For continuously-offered

courses, course descriptions change somewhat infrequently and rarely change substantively

(see, for example, Figure A-12).

Details on TF-IDF weights

The TF-IDF of a word w in document di,s,t is the product of Term Frequency (TF) and

Inverse Document Frequency (IDF). The TF for a given token in a given document is equal

to the number of times w occurs in di,s,t (cw,di,s,t), normalized by the token count of di,s,t:

TF (w, di,s,t) =
cw,di,s,t∑

w′∈W cw′,di,s,t

The IDF for a given token w measures the distinctiveness of w across all documents. In

other words, IDF (w) reflects how rare w is in the complete corpus (D) of field descriptions.

The IDF for a given token w is calculated:

IDF (w) = log

(∑
d∈D I(w ∈ d)

||D||

)
4Incidentally, the longest phrases counted as a single token are “church [of] jesus christ latter day” and

“united nation[s] security council resolution.”
5To illustrate, consider the frequent appearances of specific terms like a website URL or the name of a

job board in job descriptions. Including these “jargony” terms in the analysis might yield the misleading
impression that they are distinctive features of job-related language, when, in reality, they are simply artifacts
of the source or format of the content.
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The TF-IDF value applied to a token w in document di,s,t is the product of the two values:

vi,s,t(w) = TF -IDF (w, di,s,t) = TF (w, di,s,t)× IDF (w)

I use the TF-IDF representations of field curricula to construct a series of measures of a

field’s changing curriculum. My preferred measure calculates the syntactic distance between

a field’s curriculum in 2018 relative to 2010. Let vi,s,t be the vector representation of the

TF-IDF weights from course descriptions at institution i in field s in year t. I normalize

each vi,s,t to have a magnitude of 1. Then, I calculate the cosine distance between the vector

representation of the field’s content:

disti,s =
vi,s,2018 · vi,s,2010

||vi,s,2018|| ||vi,s,2010||

Details on curriculum alignment scores

I construct curriculum alignment scores as a means to quantify the level of overlap between

course content and specific applications of student learning. These scores are derived from

a combination of TF-IDF weights and a “relevance weight” assigned to each token in a

course description based on its importance to a particular application of student learning.

The relevance weight aims to highlight tokens that are distinctive to a given application of

student learning. While Term Frequency helps in identifying commonly appearing tokens in a

corpus, it does not address the need to downweight tokens that are commonly used in general

language. To overcome this, I create weights that compare a token’s importance within a

particular corpus (linked to a specific application of student learning) to its importance in

a “neutral corpus,” which consists of the complete text of Wikipedia articles. Tokens that

are part of common language (e.g. “the,” “a”) should appear with similar frequency in any

corpus. When a token appears significantly more often in a corpus related to an application

of student learning than in the Wikipedia text, it is likely to be of greater importance to

that specific application.

To calculate the relevance weights bqw for each token w with respect to each application

of student learning q, I divide token w’s share of all tokens in the q corpus (W q) by token

w’s share of all tokens in the Wikipedia corpus (WWiki):

bqw =

∑
w′∈W q I(w′ = w)

||W q||∑
w′∈W q I(w′ = w)

||W q||
+

∑
w′∈WWiki I(w′ = w)

||WWiki||
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Tokens with relevance weights closer to 0.5 have similar frequencies in both the Wikipedia

corpus and the application corpus. Tokens with higher relevance weights hold more signif-

icance in the application corpus compared to the Wikipedia corpus. Table 6 provides the

relevance weights of some example tokens for reference.

I calculate the curriculum alignment score for each field’s curriculum with each applica-

tion of student learning by taking the TF-IDF-weighted sum of relevance weights specific to

that application. To ensure consistent and interpretable scores, I normalize the weights in

the TF-IDF vector representation of each field’s curriculum, making sure they add up to 1.

This normalization guarantees that each curriculum alignment score falls within the range of

0 to 1, providing a meaningful measure of alignment. Higher scores indicate a stronger con-

nection between the curriculum and the intended student learning application, while lower

scores imply less relevance between the two.

C.1 Sensitivity to temporal overlap of thematic documents

Two factors may be driving the general upward trend in curriculum alignment: courses may

be increasingly incorporating topics related to the identified themes (or removing topics

unrelated to them), as I argue in this section. Alternatively, the observed trend could be an

artifact of the method itself, if the selection of reference texts biases the results toward more

recent courses. In Appendix Figure A-14, I provide evidence against this second explanation.

I replicate the analysis from Figure 7, splitting each thematic corpus into an ”older period”

(typically 2000-2010) and a ”recent period” (typically 2011-2019).6

If the increasing alignment were merely a mechanical artifact of the method, then align-

ment trends would be steeper for course years overlapping with the thematic corpus period

and flatter outside of it. This pattern does not emerge. Instead, curriculum alignment trends

remain remarkably stable across different constructions of the relevance weights. This con-

sistency reflects the relatively high correlation (0.8 − 0.95) between the relevance weights

derived from older versus recent corpora, indicating that the observed changes are primar-

ily driven by durable thematic associations (e.g., ”elections” always being linked to current

events) rather than transient trends.7

A notable exception is current events alignment, where alignment trends are uniformly

steeper when based on recent news articles compared to older ones. This difference is largely

attributable to changes in the composition of the New York Times corpus, which initially

6I exclude social justice alignment from this exercise due to limited time variation in the corpus.
7That said, the method does capture some transitory shifts. For example, the token “Iraq War” had a

relevance weight of 0.90 for current events between 2000-2010 but dropped to 0.35 between 2011-2019, while
“solar power” became increasingly associated with technology, with its weight rising from 0.11 (2000-2010)
to 0.69 (2011-2020).
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featured more sports and human interest stories among its top articles but gradually shifted

toward a heavier emphasis on political and economic news. Encouragingly, the systematic

difference in slope between older and more recent news-based alignment trends suggests that

these compositional shifts do not alter the broader finding: college curricula have increasingly

reflected contemporary themes over time.

D Discussion of the IV assumptions and robustness

A potential concern with my identification strategy is that local labor market conditions

might induce direct institutional responses, rather than working through students’ enrollment

decisions. If, for example, a major employer or state government preemptively funds new

faculty lines or facilities in a burgeoning field, the expansion in course offerings would be

driven by university-level initiatives rather than by increased student demand. Under these

circumstances, my shift-share strategy would violate the exclusion restriction, as it would

affect course supply directly rather than only shifting student enrollment patterns.

However, there are several reasons to believe this type of violation is unlikely to be

widespread in my setting. First, universities, particularly in four-year institutions, are con-

strained in their ability to proactively expand or contract course offerings due to structural

features such as budget cycles, tenure constraints, and facility constraints. The descriptive

evidence summarized in Figure 2 supports this hypothesis: course offerings often lag behind

surges in enrollment — indicating that institutions respond to students’ immediate course-

taking decisions, rather than lead them —- while course offerings remain relatively stable in

fields experiencing declining enrollment.

To further strengthen the case for the exclusion restriction, I discuss three potential

channels by which it could be violated and provide evidence that none of these factors drive

the main findings. First, I consider more seriously the claim that universities may better

anticipate changing labor market conditions and respond to these conditions directly, rather

than meeting growing student demand in these areas. If this were happening, we would

expect to see instances where course quantity expands before demand for these courses

manifests in higher enrollment. I test for this by calculating the share of courses in the two

highest-growth fields — Computer Science and Engineering — that run at capacity between

2005-06 and 2018-19. In contrast with this story, I find that the share of courses offered at

capacity is on a secular increase that pre-dates the surge in CS/Engineering enrollment and

that the share of courses offered at capacity levels out late into the period.

A second violation of the exclusion restriction would be that the growing labor market

opportunities associated with certain fields increase the cost of recruiting instructors in those
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fields, and therefore course quantity responses are constrained by labor market conditions.

While plausible, I demonstrate that this does not drive my results by Winsorizing 5% on the

value of my instrument, thereby excluding from the estimation some of the region-field pairs

that would be most exposed to this possible exclusion restriction violation, and demonstrate

that the estimates are not sensitive to these highly-exposed values. I compare the estimates

from these regressions to the main results in Tables A-10 and A-11. Comparing Columns 1

and 2, and 4 and 5, the course and section quantity elasticity estimates are nearly identical

when I exclude the kinds of fields for which this potential exclusion restriction concern may

be most acute.

A third case where the exclusion restriction would be violated would occur when a local

employer or donor, recognizing a skill gap in the local labor force, contributes to the creation

or expansion of a field to build an employee base that fills this gap. Philanthropic or gov-

ernmental funding specifically targeted at expanding academic departments is not uniformly

distributed across fields and institutions, and tends to be more prevalent in two-year col-

leges or professional/vocational programs, which are excluded from my analysis. My focus on

academic departments in four-year institutions avoids consideration of fields and institutions

that may be particularly susceptible to this exclusion restriction violation. Moreover, while

universities are exposed to the influence of donors and (in the case of public universities)

political leaders, it is not obvious that these influences are systematically correlated with la-

bor market conditions. While this potential exclusion restriction is genuinely of concern and

may occur at a small number of schools, there is not strong evidence of systemic violations

of this kind among academic disciplines in four-year universities.

Tables A-10 and A-11 present a robustness test addressing potential endogeneity in the

instrument. In Columns 3 and 6, I construct an alternative shift-share instrument that

assigns each university the major-to-occupation shares from all Census divisions except its

own. While endogeneity in the main specification is unlikely—given that any single university

contributes minimally to a multi-state region—this alternative approach further mitigates

concerns by ensuring that a university’s course supply cannot meaningfully influence the

composition of the national labor force outside its own Census division.

The IV estimates from this exercise closely align with the main results. As in the primary

analysis, the IV estimates are generally lower than the OLS estimates, reinforcing the con-

clusion that universities adjust course offerings at rates well below one-for-one with changes

in student demand. Notably, for fields experiencing growing demand, the IV estimates are

slightly higher than in the main specification. This likely reflects the fact that the alterna-

tive instrument does not fully capture the strength of regional pipelines into high-growth

fields, leading to a slightly weaker first stage that predicts smaller demand-driven growth.
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As a result, the estimated course supply response appears somewhat more proportional to

changing demand. However, these differences are minor and do not undermine the broader

robustness demonstrated by this exercise.

E Counterfactual major completions without course rationing

I conduct a counterfactual exercise using the OLS and IV estimates from Tables 2 and 3 to

project enrollments and completed majors under a scenario where students are neither ra-

tioned out of preferred courses nor diverted into less-preferred alternatives. In this scenario,

universities respond to student demand with the elasticity implied by the OLS estimates,

including unobserved demand stemming from rationing and diversion. To generate these

projections, I adjust course supply upward based on the bias suggested by the OLS esti-

mates. I then inflate enrollment at the institution-field level by applying the ratio of added

(or removed) courses to average upper-level course enrollment in the base year (2009–10).

To convert these enrollment changes into completed majors, I scale the institution-field en-

rollment projections by the average number of majors per upper-level course enrollment,

calculated using IPEDS data for major completions.

I present estimates based on both course and section offering adjustments, with my

preferred specification relying on changes in section offerings. From a policy perspective,

modifying section availability represents a more flexible and cost-effective approach to alle-

viating course rationing compared to adding entirely new courses. Figure A-11 displays the

median and interquartile range of projected changes in major completions for a selection of

relevant fields.

The simulation results suggest that, in a world where universities respond to student de-

mand as elastically as implied by the OLS estimates — but without rationing or diversion —

U.S. institutions would have produced notably more majors in Computer Science and Engi-

neering, while producing fewer in the Humanities and Education. Under this counterfactual,

Computer Science major completions would have been 2.5% higher, and Engineering major

completions 2.3% higher. Conversely, fields like History would have experienced declines,

with major completions decreasing by 4.4%. It is important to note that these estimates

likely represent upper-bound reductions in low-demand fields; tenure constraints and institu-

tional inertia can limit the capacity to reduce faculty headcount, making it relatively costless

to continue offering such courses.

The inelasticity of course supply creates both winners and losers within the university.

Students in high-demand fields face rationing or overcrowded classes, restricting their ac-

cess to preferred courses. In contrast, students pursuing low-demand fields benefit from a
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broader array of course options that might shrink under a more elastic supply regime, along

with smaller class sizes that may enhance their learning environment. Figure A-4 demon-

strates this reallocation in practice. Since 2010, enrollment the average upper-level section

in Computer Science has increased by 40% whereas enrollment in the average section of a

Humanities or Education class decreased by 15%.

F Curriculum alignment decomposition

Following Foster et al. (2001), I decompose the total change in average curriculum alignment

over the ten-year period 2012-13 and 2022-23 into changes resulting from entry, exit, within,

and between. Within course changes measure the contribution from changing course de-

scriptions for courses offered continuously over this period. Between course changes measure

the contribution from changing student enrollment across continuously offered courses but

within the same field of study. Exit measures the contribution from courses that were offered

in 2012-13 but were not offered in 2022-23. Entry measures the contribution of courses that

were offered in 2022-23 but were not offered in 2012-13.

The decomposition proceeds as follows: For each institution i and field s, let Si,s be the

set of courses offered continuously between 2012-13 and 2022-23, Ei,s be the set of courses

offered in 2022-23 but not offered in 2012-13 or earlier, and Xi,s be the set of courses offered

in 2012-13 but discontinued before 2022-23. I denote a course belonging to any of these

groups as x (for simplicity, I will omit the i and s subscripts when referring to a course).

Let Si,s,t be the set of courses offered at institution i in field s during year t ∈ {1, 2}, and
denote courses by x ∈ Si,s,t (for simplicity, I will omit the i and s subscripts when I refer to a

course). Let sx,t be course x’s share of enrollment at institution i in field s, and φq
x,t be course

x’s curriculum alignment to theme q. Finally, let Φq
i,s,t be the average curriculum alignment

to theme q across all courses at institution i in field s during term t. The decomposition

proceeds as follows:

∆Φq
i,s =

∑
x∈S

sx1 (φ
q
x2 − φq

x1)︸ ︷︷ ︸
within

+
∑
x∈S

(sx2 − sx1) (φ
q
x1 − Φq

1) +
∑
x∈S

(sx2 − sx1) (φ
q
x2 − φq

x1)︸ ︷︷ ︸
between

+
∑
x∈E

sx2 (φ
q
x2 − Φq

1)︸ ︷︷ ︸
entry

−
∑
x∈X

sx1 (φ
q
x1 − Φq

1)︸ ︷︷ ︸
exit

Having computed the components Φq
i,s for each institution-field pair, I aggregate first
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up to the institution level, then average across institutions for the final decomposition. I

aggregate up to the institution level as the average of each component of Φq
i,s weighted by

each field s’s share of enrollment in the base period. This gives me the components of Φq
i for

each school. I average each of the components across schools to produce the values plotted

in Figure 8. Note that the analysis restricts the sample of institutions to the subset for

which I observe course offerings continuously from 2012-13 to 2022-23. As a consequence,

the 10-year change in curriculum alignments plotted in Figure 7 differs slightly from the

changes plotted in Figure 8.
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G Supplemental figures and tables

Figure A-1. Geographic coverage of the course catalog dataset

Figure A-2. Annual coverage of course catalog data

Notes: The figure counts the number of institutions in the course catalog dataset by year. The left panel

counts the number of institutions with course description data; the right panel counts the number of institu-

tions with enrollment data. For many institutions, the data record both enrollment and course descriptions.
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Figure A-3. Compare indexed credit growth rates in catalog data to IPEDS

Notes: The figure compares the growth in total credits for enrollment in undergraduate courses in the

course catalog data to the growth in total undergraduate credits reported in IPEDS. Observations are at the

institution-year level. Catalog credits are indexed as the percent change relative to undergraduate credits

completed in 2018-19; IPEDS credits are indexed as the percent change relative to undergraduate credits

completed in 2018-19 in IPEDS. Because it is used as the index, enrollment in 2018-19 is omitted from the

plot. The plotted line is the 45◦ line. The correlation coefficient between the two series is 0.94.
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Table A-1. Field classification

Field category  Field  Sub-field Field category  Field  Sub-field  Field category  Field  Sub-field  Field category  Field  Sub-field

Business Business Accounting  Social Science Communication Advertising STEM - exclude CS Agriculture Agriculture Skilled Trade Architecture Architecture 

 Business Administration   Communication   Agriculture Economics   Arts Animation/Game Design 

 Business Math   Journalism   Animal Science   Graphic Design 

 Finance   Media Studies   Botany   Hospitality Hospitality 

 Leadership   Community Studies Community Studies   Food Science   Medicine EMT 

 Management   Consumer Science Consumer Studies   Horticulture   Other CAD 

 Marketing   Criminal Justice Criminal Justice   Plant Science   Physical Education Kinesiology 

 Operations   Ethnic/Cultural Studies American Studies   Biology Biochemistry   Rehabilitation Rehabilitation 

 Organization Studies   Ethnic/Cultural Studies   Biology   Security Studies Security Studies 

 Real Estate   Gender Studies   Cognitive Science   Skilled Trade Automotives 

 Statistics - Business   International Studies International Studies   Neuroscience   Aviation 

 Consumer Science Decision Science   Law Law   Chemistry Chemistry   Construction 

 Economics Economics   Political Science Political Science   Engineering Aerospace   HVAC 

 Human Resources Human Resources   Psychology Counseling   Bioengineering   Manufacturing 

 Math Risk Management   Psychology   Chemical Engineering   Skilled Trade 

 Other Admin   Public Policy Public Administration   Civil Engineering   Tax 

Humanities Anthropology Anthropology   Public Policy   Engineering   Vocational 

 Archeology   Security Studies Peace Studies   Industrial Engineering Other Audiology Audiology 

 Arts Art   Social Science Social Science   Mechanical Engineering   ESL ESL 

 Art History   Social Science - Other   Nuclear Engineering   Other Adult Learning 

 Dance   Social Studies   Systems Engineering   Apprenticeship 

 Film   Social Work Social Work   Technology - Other   Cannabis 

 Music   Sociology Sociology   Environmental Studies Energy Science   General Studies 

 Theater   Urban Studies   Environmental Engineering   Graduate 

 Consumer Science Fashion   Urban Planning Urban Planning   Environmental Studies   Military 

 Human Development  Education Education Early Childhood Education   Forestry   Other 

 English English   Education   Natural Resources   Professional Development 

 Literature   Elementary Education   Naval Studies   Remedial 

 Writing   Higher Education   Health Health   Student Affairs 

 History History   Secondary Education   Nutrition   Study Abroad 

 Humanities Classics   Special Education   Math Math   Univeristy 

 Humanities   Teaching   Medicine Allied Health   University 

 Language Asian Languages  STEM - CS Computer Science Computer Science   Dentistry   University - Other 

 Asian Studies   Computer Science - Other   Medicine   Wine 

 Germanic Languages   Electrical Engineering   Optometry   Physical Education Physical Education 

 Language - Other   Informatics   Physiology   Recreation 

 Mideast Languages   IT   Nursing Nursing   Sports 

 Romance Languages   Statistics - CS   Other Mining   Rehabilitation Occupational Therapy 

 Slavic Languages    Oil and Gas 

 Library Library    Pharmacy Pharmacy 

 Library Science    Physics Physics 

 Linguistics Linguistics    Public Health Public Health 

 Other Museum Studies    Science - Other Astronomy 

 Philosophy Philosophy    Earth Science 

 Religion Religion    Science - Other 

 Social Science Geography    Stats/Data Science Data Science 

  Statistics 
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Figure A-4. Change in average course size

Notes: This figure plots the trend in average number of students per course and section between for six

aggregated field categories. For each institution, I calculate the average number of students per course and

section in each of the field categories by year. The figure plots the average of these values across institutions.
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Figure A-5. First-stage monotonicity

Notes: This figure compares relative enrollment growth by field against the shift-share instrument capturing

region-by-field employment growth. Points are at the field level. For each institution and field, I calculate

the relative enrollment growth from 2009-10 to 2017-18, relative to the overall enrollment growth at the

institution. For each field, I then calculate the average relative enrollment growth and plot it against the

average value of the shift-share instrument. Each point in the figure is proportional in size to the sum of

the weight each field receives in the regression analysis, where weights are allocated by field within each

institution in proportion to 2010-11 enrollment and each institution receives total weight equal to 1.
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Figure A-6. Test for quantity and enrollment anticipation of labor market changes

Notes: The figure plots point estimates from separate regressions of log enrollment, course

quantity, and section quantity on the value of the shift-share instrument. Observations are

at the institution-field-year level. Regression controls for institution-by-year fixed effects.

Standard errors are clustered at the institution level.
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Table A-2. First-stage estimates

Catalog data IPEDS
All undergraduate Upper-level Completed degrees

(1) (2) (3)

% enrollment change - overall -0.023 -0.029 -0.048
(0.028) (0.038) (0.059)

Employment change 2.524∗∗∗ 4.569∗∗∗ 4.282∗∗∗

(0.288) (0.409) (0.505)

F-stat 77 125 72
Observations 4,394 3,911 3,933
R2 0.059 0.114 0.072

Notes: Observations are at the institution-by-field level. I regress the log change in enrollment on the
shift-share instrument reflecting major-typical employment growth in the Census division where the
institution is located. Columns 1-2 measure changing enrollment using the course catalog data; Column
3 measures changing enrollment using completed degrees data from IPEDS. In the regression, each
institution is uniformly weighted. Within an institution, subjects receive weights proportional to the
start-of-period enrollment. In all columns, standard errors are clustered at the institution and Census
division-by-field level.

Table A-3. F-stats for alternative instruments

Lag length
(1) (2) (3) (4) (5) (6) (7) (8)

All periods 7.85 9.61 12.77 17.93 33.75 44.32 58.81 70.63
Only period ending 2018-19 1.04 12.45 15.87 20.64 30.70 39.82 53.10 124.57

Notes: This table presents the first-stage F-statistics of log enrollment changes on the employment growth
instrument calculated over various periods. “Lag length” refers to the duration (in years) over which these
changes are calculated. The table includes F-statistics for three specific time windows: a single period
ending in the 2018-19 school year; overlapping periods from 2009 to 2022 (e.g., a 4-year lag would cover
intervals like 2009-2013, 2010-2014, etc.); and non-overlapping periods with specified lag lengths from 2009
to 2022 (e.g., a 4-year lag would cover intervals like 2009-2013, 2014-2018, etc.).
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Table A-4. Reduced form

# of Courses # of Sections
(1) (2) (3) (4)

% enrollment change - overall 0.293 0.299 0.624 0.628
(0.048) (0.049) (0.039) (0.040)

Employment change 0.939 2.44
(0.273) (0.277)

Employment change - growing 1.89 3.11
(0.344) (0.404)

Employment change - shrinking 0.328 2.00
(0.335) (0.379)

Observations 3,911 3,911 3,911 3,911
R2 0.04 0.05 0.18 0.18

Notes: Observations are at the institution-by-field level. The analysis regresses
change in upper-level course quantity on the institution average change in enrollment,
represented as log differences from 2010-11 to 2018-19, and the shift-share instrument
capturing region-by-field variation in changing occupation growth from 2010 to 2018.
Quantity and enrollment are credit hour-weighted. Each institution receives equal
weight; within each institution, fields are weighted by start-of-period enrollment.
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Figure A-7. Testing for leads in Computer Science course quantity change

Notes: The figure plots the distributions of the share of Computer Science seats unfilled by year. For each

school, I calculate the share of seats unfilled based on total enrollment in Computer Science courses and the

listed capacity for these courses.
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Table A-5. Course quantity elasticity regression, all undergraduate courses

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change - overall 0.255 0.257 0.289 0.296 0.321 0.327 0.348 0.347
(0.027) (0.040) (0.012) (0.018) (0.015) (0.019) (0.030) (0.025)

% enrollment change - field 0.193 0.184 0.305 0.321 0.383 0.393 0.387 0.217
(0.010) (0.011) (0.012) (0.014) (0.013) (0.014) (0.020) (0.068)

First Stage F-stat 76.8

Observations 102,114 45,643 85,136 20,525 55,171 13,179 4,393 4,393
R2 0.065 0.058 0.161 0.168 0.263 0.269 0.284 0.244

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The analysis
regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are credit-hour
weighted. Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2 estimate elasticities
using two-year differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using eight-year differences. Columns
1, 3, and 5 use overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single period. In Columns 1-7, standard errors
are clustered at the institution-by-period level; in Column 8, standard errors are clustered at the institution and field-by-Census division level, which is the
level of variation for the instrument.
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Table A-6. Section quantity elasticity regression, all undergraduate courses

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change - overall 0.515 0.526 0.644 0.670 0.700 0.709 0.719 0.718
(0.020) (0.032) (0.019) (0.019) (0.026) (0.021) (0.033) (0.020)

% enrollment change - field 0.343 0.315 0.539 0.553 0.647 0.657 0.669 0.527
(0.011) (0.016) (0.010) (0.014) (0.010) (0.012) (0.023) (0.049)

First Stage F-stat 76.8

Observations 102,114 45,643 85,136 20,525 55,171 13,179 4,393 4,393
R2 0.179 0.155 0.408 0.421 0.585 0.583 0.612 0.594

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The analysis
regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are credit-hour
weighted. Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2 estimate elasticities
using two-year differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using eight-year differences. Columns
1, 3, and 5 use overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single period. In Columns 1-7, standard errors
are clustered at the institution-by-period level; in Column 8, standard errors are clustered at the institution and field-by-Census division level, which is the
level of variation for the instrument.
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Table A-7. Robustness on course quantity elasticities using different
offsets and lags

Lag length
offset 1 2 3 4 5 6 7 8

0
0.55
(0.01)

0.51
(0.01)

0.50
(0.01)

0.50
(0.01)

0.50
(0.01)

0.49
(0.01)

0.50
(0.01)

0.50
(0.01)

1
-0.16
(0.02)

0.21
(0.01)

0.26
(0.01)

0.31
(0.01)

0.34
(0.01)

0.37
(0.01)

0.38
(0.01)

0.40
(0.01)

2
0.05
(0.01)

-0.05
(0.01)

0.17
(0.01)

0.23
(0.01)

0.28
(0.01)

0.31
(0.01)

0.34
(0.01)

0.35
(0.01)

3
-0.01
(0.01)

0.02
(0.01)

-0.04
(0.01)

0.14
(0.01)

0.20
(0.01)

0.25
(0.01)

0.27
(0.01)

0.30
(0.01)

4
0.01
(0.01)

0.00
(0.01)

0.03
(0.01)

-0.02
(0.01)

0.13
(0.01)

0.18
(0.01)

0.22
(0.01)

0.25
(0.01)

Notes: This table summarizes OLS estimates of course quantity elasticity using
different lag lengths and offsets. Lag length refers to the length of time in years
over which percent changes in enrollment and course quantity are calculated. Off-
set refers to the lag imposed when regressing changes in course quantity on earlier
changes in enrollment. Estimates come from regressions of change in course quan-
tity on change in enrollment, each represented as long log differences. Quantity
and enrollment are credit-hour weighted. Each institution receives equal weight;
within each institution, fields are weighted by start-of-period enrollment. Standard
errors are clustered at the institution-by-year level.
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Figure A-8. Growth in course quantity elasticity with longer lags

Notes: The figure plots OLS estimates of course quantity elasticity estimated using different “lag lengths”

of change in course quantity and enrollment. Lag length refers to the number of years over which changes in

enrollment and course quantity are calculated. Enrollment and course quantity changes are offset by 1 year.

Estimates are plotted separately for lower-level courses, upper-level courses, and all undergraduate courses.

Standard errors are clustered at the institution-year level.
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Table A-8. Alternative course elasticity specification - no controls

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change 0.206 0.202 0.314 0.327 0.397 0.409 0.396 0.230
(0.010) (0.011) (0.010) (0.014) (0.011) (0.016) (0.025) (0.053)

First Stage F-stat 123.6

Observations 90,618 40,511 75,553 18,228 48,762 11,662 3,911 3,911
R2 0.054 0.049 0.140 0.145 0.243 0.247 0.257 0.212

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The
analysis regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are
credit-hour weighted. Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2
estimate elasticities using two-year differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using
eight-year differences. Columns 1, 3, and 5 use overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single
period. In Columns 1-7, standard errors are clustered at the institution-by-period level; in Column 8, standard errors are clustered at the institution
and field-by-Census division level, which is the level of variation for the instrument.
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Table A-9. Alternative section elasticity specification - no controls

2-year diffs (1998-2022) 4-year diffs (1998-2022) 8-year diffs (1998-2022) Single 8-year diff (2009-2018)

Rolling Staggered Rolling Staggered Rolling Staggered OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

% enrollment change 0.309 0.309 0.484 0.510 0.594 0.611 0.608 0.586
(0.011) (0.013) (0.011) (0.015) (0.010) (0.016) (0.025) (0.052)

First Stage F-stat 123.6

Observations 90,618 40,511 75,553 18,228 48,762 11,662 3,911 3,911
R2 0.095 0.091 0.235 0.254 0.362 0.373 0.415 0.414

Notes: Observations are at the institution-field-period level, where a period is a pair of comparison years differenced to measure percent changes. The
analysis regresses change in upper-level course quantity on change in enrollment, each represented as long log differences. Quantity and enrollment are
credit-hour weighted. Each institution receives equal weight; within each institution, fields are weighted by start-of-period enrollment. Columns 1-2
estimate elasticities using two-year differences; Columns 3-4 estimate elasticities using four-year differences; Columns 5-8 estimate elasticities using
eight-year differences. Columns 1, 3, and 5 use overlapping periods (e.g. 2010-2014, 2011-2015); all other columns use adjacent periods or only a single
period. In Columns 1-7, standard errors are clustered at the institution-by-period level; in Column 8, standard errors are clustered at the institution
and field-by-Census division level, which is the level of variation for the instrument.
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Table A-10. Course quantity IV robustness to alternative specifications

Base Winsorized Alternative IV Base Winsorized Alternative IV
(1) (2) (3) (4) (5) (6)

% enrollment change - overall 0.299 0.295 0.299 0.304 0.300 0.305
(0.046) (0.046) (0.046) (0.047) (0.048) (0.047)

% enrollment change - field 0.206 0.188 0.330
(0.055) (0.070) (0.058)

% enrollment change - growing 0.345 0.353 0.440
(0.059) (0.092) (0.076)

% enrollment change - shrinking 0.078 0.076 0.170
(0.088) (0.098) (0.084)

First stage F-stat 124.6 82.9 109.1 69.9 43.8 63.6

p-value grow = shrink 0.012 0.027 0.017

Observations 3,911 3,734 3,911 3,911 3,734 3,911
R2 0.245 0.234 0.297 0.061 0.056 0.069

Notes: Columns 1 and 4 contain estimates from the main IV specification presented in the paper. Columns 2 and 5 drop the 2.5%
of region-fields with the highest and lowest relative employment growth. Columns 3 and 6 estimate the IV with an alternative
instrument based on field-level employment occupation growth in all Census divisions excluding the Census division in which the
university is located. For all regressions, standard errors are clustered at the region-by-field level. For the estimates in Columns
4-6, bootstrapped standard errors are calculated using 1, 000 repetitions of the estimation, resampling region-by-field clusters in each
iteration. Significance stars are suppressed, as the natural comparison is not obviously 0.
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Table A-11. Section quantity IV robustness to alternative specifications

Base Winsorized Alternative IV Base Winsorized Alternative IV
(1) (2) (3) (4) (5) (6)

% enrollment change - overall 0.640 0.639 0.640 0.641 0.640 0.641
(0.030) (0.030) (0.029) (0.030) (0.031) (0.030)

% enrollment change - field 0.533 0.526 0.595
(0.037) (0.049) (0.047)

% enrollment change - growing 0.564 0.560 0.625
(0.059) (0.096) (0.074)

% enrollment change - shrinking 0.504 0.502 0.554
(0.061) (0.074) (0.057)

First stage F-stat 124.6 82.9 109.1 69.9 43.8 63.6

p-value grow = shrink 0.48 0.621 0.453

Observations 3,911 3,734 3,911 3,911 3,734 3,911
R2 0.557 0.555 0.563 0.186 0.179 0.195

Notes: Columns 1 and 4 contain estimates from the main IV specification presented in the paper. Columns 2 and 5 drop the 2.5%
of region-fields with the highest and lowest relative employment growth. Columns 3 and 6 estimate the IV with an alternative
instrument based on field-level employment occupation growth in all Census divisions excluding the Census division in which the
university is located. For all regressions, standard errors are clustered at the region-by-field level. For the estimates in Columns
4-6, bootstrapped standard errors are calculated using 1, 000 repetitions of the estimation, resampling region-by-field clusters in each
iteration. Significance stars are suppressed, as the natural comparison is not obviously 0.
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Figure A-9. Heterogeneity in course and section quantity elasticity by institution size

Courses

Sections

Notes: This figure compares the course quantity elasticities at different types of institutions.

The figure plots estimates of the interaction term(s) between relative changes in enrollment

and the institution’s size, where undergraduate enrollment below 5,000 is omitted institution

category. The regression estimates eight-year course and section quantity elasticities with

a one-year offset. Observations each the regression are at the institution-field-term level.

Standard errors are clustered at the institution-term level.
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Figure A-10. Heterogeneity in course and section quantity elasticity by public/private
control

Courses

Sections

Notes: This figure compares the course quantity elasticities at different types of institutions.

The figure plots estimates of the interaction term(s) between relative changes in enrollment

and the institution’s control (public vs private), where public universities are the omitted

institution category. The regression estimates eight-year course and section quantity elastic-

ities with a one-year offset. Observations each the regression are at the institution-field-term

level. Standard errors are clustered at the institution-term level.
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Figure A-11. Counterfactual major completions without course rationing

Notes: Figure plots estimates of counterfactual change in completed majors in the absence of rationing of

seats in high demand sections. Values are estimated by estimating the unobserved percent change in demand

for each institution-field pair between 2010-11 and 2018-19, using the difference in the section quantity point

estimates between the IV and OLS specifications in Table 4. I translate the percentage change in demand

into credit hours, then estimate the corresponding change in majors by multiplying by the 2010-11 ratio of

number of completed majors (from IPEDS) per credit hour. The figure plots the average and inter-quartile

range of estimated change in completed majors, calculated within field and across institutions, for a sample

of fields.
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Figure A-12. Survival of courses offered in 2012-13

Notes: Figure plots the survival path of courses offered in 2012-13. In each year, the course can occupy

one of three states; a course is “Discontinued” if it is offered in a given year but never offered subsequently,

a course is “Offered with updated description” if the course is offered in a given year but with a course

description that does not match its description in 2012-13. A course is “Offered continuously” if it is not

discontinued or offered with updated description. The figure cuts off in 2022-23 to ensure that courses are

not erroneously counted as discontinued when they are in fact offered infrequently. Each course receives

equal weight in this analysis.
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Figure A-13. Validation of curriculum alignment scores using ChatGPT

Notes: This figure plots results from a validation exercise testing how the curriculum alignment measures

compare to “manual” review. For each theme, 500 four-course “menus” of courses were generated by ran-

domly selecting one course description from each quartile of the distribution of alignment scores for that

theme. ChatGPT was asked to order the courses in order from least to most aligned to the given theme.

The bars plot the share of pairwise comparisons for which ChatGPT’s ordering matches the ordering from

the curriculum alignment scores.
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Figure A-14. Sensitivity of curriculum alignment trend to alternative alignment weights

Notes: This figure compares the trend in curriculum alignment scores for courses offered from 2002-03 to

2022-23 under alternative constructions of the curriculum alignment weights. For each series, the trend is

estimated in course-level regressions of a course’s curriculum alignment score for a given theme on a vector of

year dummies, controlling for institution-by-field fixed effects. Changes are measured relative to the average

curriculum alignment score in 2012-13 and reported in standard deviations. The “base” estimates for each

theme use alignment weights constructed from the full thematic corpus; the “older period” estimates use

alignment weights constructed only using documents from the first half of the thematic corpus; and the

“recent period” estimates use alignment weights constructed only using documents from the second half of

the thematic corpus. The figure omits alignment to social justice, which is not constructed from serialized

documents. Analysis restricts to upper-level courses. Standard errors are clustered at the institution-field

level.
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Figure A-15. Heterogeneity in course content by size category: 2012-13 to 2022-23

Notes: This figure compares the topics emphasized in college courses at different types of insti-

tutions across different points in time. The estimates come from separate course-level regression

of curriculum alignment score on size category-by-academic year dummies. Estimates are trans-

formed into standard deviation changes relative to universities with undergraduate enrollment less

than 5,000 in 2012-13. For the regression, all institution-terms receive equal weight; within the

institution-term, courses are weighted by enrollment. Thus, the estimates speak to variation in

the topical exposure of the courses a typical student takes at different kinds of institutions and at

different points in time. The regression restricts to a panel of institutions with course description

and enrollment data in 2012-13 and 2022-23.
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Figure A-16. Heterogeneity in course content by public/private control: 2012-13 to 2022-
23

Notes: This figure compares the topics emphasized in college courses at different types of insti-

tutions across different points in time. The estimates come from separate course-level regression

of curriculum alignment score on institution control-by-academic year dummies. Estimates are

transformed into standard deviation changes relative to public universities in 2012-13. For the

regression, all institution-terms receive equal weight; within the institution-term, courses are

weighted by enrollment. Thus, the estimates speak to variation in the topical exposure of the

courses a typical student takes at different kinds of institutions and at different points in time.

The regression restricts to a panel of institutions with course description and enrollment data in

2012-13 and 2022-23.
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